Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, a phase-field model of Si-doped hafnium oxide-based ferroelectric thin films is established. And then, the synergistic effect of Si concentration and distribution on ferroelectric properties optimization of Si:HfOferroelectric thin films is studied with the proposed model. It is found that no matter how Si dopant is distributed in the film, the volume fraction of the ferroelectric phase in the film increases first and then decreases with the increase of Si concentration. However, compared with the uniform distribution, the layered distribution is more likely to great improve ferrelectric properties. When Si dopant is uniformly distributed in the film, the highest remanent polarization value that the film can obtain via Si concentration modulation is 38.7C cm, and the corresponding Si concentration is 3.8 cat%, which is consistent with the experimental results. When Si dopant is layered in the film, and the concentration difference between the Si-rich and Si-poor layers is 7.6%, in the Si concentration range of 3.6 cat%-3.8 cat%, the residual polarization of the film reaches 46.4-46.8C cm, which is 20% higher than that when Si dopant are evenly distributed in the film. The above results show that selecting the Si layered distribution mode and controlling the concentration difference between Si-rich and Si-poor layers in an appropriate range can greatly improve the films' ferroelectric properties and broaden the Si concentration optimization range of the ferroelectric properties of the films. The result provides further theoretical guidance on using Si doping to adjust the ferroelectric properties of hafnium oxide-based films.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/ac8513DOI Listing

Publication Analysis

Top Keywords

ferroelectric properties
20
thin films
12
distributed film
12
synergistic concentration
8
concentration distribution
8
distribution ferroelectric
8
properties optimization
8
optimization sihfoferroelectric
8
sihfoferroelectric thin
8
hafnium oxide-based
8

Similar Publications

Lead-free electroceramics have attracted significant research interest as alternatives to lead-containing systems due to concerns related to lead's toxicity to human health and the environment. Solid solutions based on bismuth sodium titanate (BNT) and barium titanate (BT), particularly those with compositions near the morphotropic phase boundary (MPB), such as 0.94 BiNaTiO-0.

View Article and Find Full Text PDF

Two-dimensional van der Waals (2D-vdW) semiconducting ferroelectrics, such as CuInPSe (CIPSe) and CuInPS (CIPS), offer unique opportunities for lightweight, scalable, low-power nanoscale electronic devices. However, the limited pool of functional 2D-vdW ferroics highlights the need for clear design principles that can be used to guide experiments. Here, we use first-principles density functional theory (DFT) to study how isovalent atomistic substitution at In and P sites modifies structure, polarization, and electronic properties in CIPSe and CIPS.

View Article and Find Full Text PDF

In this study, using a set of scanning probe microscopy techniques, we investigate the electronic properties of the domain walls in the layered ferroelectric semiconductor of the transition metal oxide dihalide family, NbOI. Although the uniaxial ferroelectricity of NbOI allows only 180° domain walls, the pristine 2D flakes, where polarization is aligned in-plane, typically exhibit a variety of as-grown domain patterns outlined by the electrically neutral and charged domain walls. The electrically biased probing tip can modify the as-grown domain structures.

View Article and Find Full Text PDF

Bismuth ferrite (BiFeO), a perovskite oxide with both ferroelectric and antiferromagnetic properties, has emerged as a promising material for environmental cleanup due to its piezo-photocatalytic activity. The material's ability to degrade organic pollutants, such as azo dyes, under both light irradiation and mechanical stress (ultrasonic waves) offers a dual-action mechanism for efficient wastewater treatment. In this work, we explore the synthesis of BiFeO nanoparticles a simple sol-gel method, followed by characterization of their structural, magnetic, and photocatalytic properties.

View Article and Find Full Text PDF

Nematic Liquid Crystals (LCs), noted for their simple molecular alignment and broad use in optoelectronics, remain unmodified for over a century. However, in 2017, a unique polar phase, the ferroelectric nematic (N), is confirmed. Subsequently, in 2024, the revolutionary spontaneous mirror symmetry breaking of ferroelectric twist-bend nematic chiral structures (N phase) is demonstrated.

View Article and Find Full Text PDF