Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hydrogel electrolyte is widely used in solid energy storage devices because of its high ionic conductivity, environmental friendliness, and non-leakage property. However, hydrogel electrolyte is not resistant to freezing. Here, a high proton conductive zwitterionic hydrogel electrolyte with super conductivity of 1.51 mS cm at -50 °C is fabricated by random copolymerization of acrylamide and zwitterionic monomer in the presence of 1 m H SO and ethylene glycol (EG). The antifreezing performance and low temperature conductivity are ascribed to hydrogen bonds and ionic bonds between the components and water molecules in the system and can be tuned by changing the monomer ratio and EG contents. The proton hopping migration on the ionic group of the polymer chains and Grotthuss proton transport mechanism are responsible for the high proton conductivity while Grotthuss transport is dominated at the glassy state of the polymer chains. The electrolyte-assembled supercapacitor (SC) offers high specific capacitance of 93.5 F g at 25 °C and 62.0 F g at -50 °C with a capacitance retention of 91.1% and 81.5% after 10 000 cycles, respectively. The SC can even work at -70 °C. The electrolyte outperforms most reported antifreezing hydrogel electrolytes and has high potential in low-temperature devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9507348PMC
http://dx.doi.org/10.1002/advs.202201679DOI Listing

Publication Analysis

Top Keywords

hydrogel electrolyte
16
zwitterionic hydrogel
8
grotthuss transport
8
transport mechanism
8
high proton
8
polymer chains
8
hydrogel
5
electrolyte
5
high
5
antifreezing proton
4

Similar Publications

Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles.

View Article and Find Full Text PDF

With the continuous development of flexible sensors and flexible energy storage devices, gel materials with good flexibility, toughness, and tunable properties have attracted wide attention. Deep eutectic solvents (DES) have an obvious advantage of thermal and chemical stability over water. Therefore, eutectogels can effectively solve the problem of insufficient stability of traditional hydrogels.

View Article and Find Full Text PDF

A novel dual-mode sensing system integrating a magnetic core-shell CuFeO/Cu/MnO nanozyme with a stimuli-responsive agarose-deep eutectic solvent hydrogel (DES-Aga) is reported. The nanozyme exhibits exceptional oxidase-like activity, characterized by a low Michaelis constant (K = 0.14 mM) and high catalytic efficiency (V = 1.

View Article and Find Full Text PDF

Solid-state organic electrochemical transistors.

Mater Horiz

September 2025

Faculty of Science, School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia.

Organic electrochemical transistors (OECTs) continue to be the subject of much detailed and systematic study, being suitable for a diverse range of applications including bioelectronics, sensors, and neuromorphic computing. OECTs conventionally use a liquid electrolyte, and this architecture is well suited for sensing or bio-interfacing applications where biofluids or liquid samples can be used directly as the electrolyte. A more recent trend is solid-state OECTs, where a solid or semi-solid electrolyte such as an ion gel, hydrogel or polyelectrolyte replaces the liquid component for an all-solid-state device.

View Article and Find Full Text PDF

This study introduces the HydroTherm-Flow Smart Window (HTF Window), the first groundbreaking integration of thermochromic windows and Fe-Cr redox flow batteries (Fe-Cr RFBs), achieving dual functionalities of dynamic solar modulation-via dual-band (visible + near-infrared, NIR) modulation-and high-efficiency energy storage in a single component. Leveraging tunable hydroxypropyl cellulose (HPC) hydrogels, it enables ultrafast optical switching and autonomous nighttime opacity, overcoming the slow response and privacy limitations of conventional thermochromic systems. By repurposing the window as a compact electrolyte reservoir, it reduces the RFB spatial footprint while enhancing ionic conductivity by 30% via hydrogel "ion highways," achieving 77% energy efficiency with a 40% reduction in the solar heat gain coefficient.

View Article and Find Full Text PDF