98%
921
2 minutes
20
The social media podium offers a communal perspective platform for web marketing, advertisement, political campaign, etc. It structures like-minded end-users over the explicit group as a community. Community structure over social media is the collaborative group of globally spread users having similar interests regarding a communal topic, product or any other axis. In recent years, researchers have widely used clustering techniques of data mining to structure communities over social media. Still, due to a lack of network and implicit communal information, researchers cannot bind mutually robust and modular community structures. The collaborative features of social media are inherent with implicit and explicit end-users. The explicit nature of both active and passive users is easily extracted from the graphical structure of social media. On the other hand, the degree of information inclusion of implicit features depends upon end-users participation. The Implicit features of frequently active users are diversely available, while integrating passive and silent users' implicit features over the community is tedious. This work proposed a social theory based influence maximization (STIM) framework for community detection over social media. It combines user-generated content with profile information, extracts passive social media users through influence maximization, and provides the user space for influencing inactive users. The STIM framework clusters identical nodes over the maximum influencing node axis based on their graphical parameters such as node degree, node similarity, node reachability, modularity, and node density. This framework also provides the structural, relational and mathematical concept for the functional grouping of like-minded people as a community over social media through social theory. Finally, an evaluation has been carried out over six real-time datasets. It analyses that convolution neural network over STIM structure more dense and modular communities via influence maximization. STIM acquired around 93% modularity and 94% Normalized Mutual Information (NMI), resulting in approximately 2.23% and 5.69% improvements in modularity and NMI, respectively, over the best-acquired result of the benchmark approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295114 | PMC |
http://dx.doi.org/10.1007/s13369-022-07020-z | DOI Listing |
J Eat Disord
September 2025
Center for Nutrition and Therapy (NuT), University of Applied Sciences Muenster, Corrensstraße 25, 48149, Muenster, Germany.
Eating disorders are primarily associated with women and an obsession with thinness. Recent research and social media content show that men are also concerned about their body image, striving for a muscular and athletic physique. To investigate eating disorder tendencies among male content creators with a mesomorphic body type (N = 26), a social media analysis was conducted on Instagram and TikTok over four weeks.
View Article and Find Full Text PDFJ Am Soc Cytopathol
August 2025
Department of Pathology, Ruffolo, Hooper & Associates, University of South Florida, Tampa, Florida.
In recent years, social media (SoMe) has revolutionized medical education within the field of pathology; however, its performance in cytopathology has not been explored in detail. This systematic review aims to analyze SoMe trends, hashtag metrics, and online resources within cytopathology over the period of 7 years. A systematic review of 4 databases (PubMed, Medline, Embase, and Scopus) was conducted between January 1st, 2017, and December 22nd, 2022, in order to identify relevant English-language articles about SoMe and cytopathology.
View Article and Find Full Text PDFJ Aging Stud
September 2025
Department of Literature and Art, Maastricht University, the Netherlands.
This article offers an anocritical reading of Girls5eva, a sitcom about a 1990s one-hit girl group trying to make a comeback. Building on scholarship into the representation of aging women in popular media and the music industry, our reading first addresses fuzzy boundaries between life stages and transgressions of the normalized life course. Second, we examine the discourse of girl power and its relationship to midlife transformation.
View Article and Find Full Text PDFJ Med Internet Res
September 2025
Artificial Intelligence and Mathematical Modeling Lab, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
Background: The H5N1 avian influenza A virus represents a serious threat to both animal and human health, with the potential to escalate into a global pandemic. Effective monitoring of social media during H5N1 avian influenza outbreaks could potentially offer critical insights to guide public health strategies. Social media platforms like Reddit, with their diverse and region-specific communities, provide a rich source of data that can reveal collective attitudes, concerns, and behavioral trends in real time.
View Article and Find Full Text PDFJ Med Internet Res
September 2025
Department of Community Medicine, Faculty of Health, UiT The Arctic University of Norway, Tromsø, Norway.
Background: The ability to access and evaluate online health information is essential for young adults to manage their physical and mental well-being. With the growing integration of the internet, mobile technology, and social media, young adults (aged 18-30 years) are increasingly turning to digital platforms for health-related content. Despite this trend, there remains a lack of systematic insights into their specific behaviors, preferences, and needs when seeking health information online.
View Article and Find Full Text PDF