Heterogeneity of resting-state EEG features in juvenile myoclonic epilepsy and controls.

Brain Commun

Department of Basic & Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.

Published: July 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Abnormal EEG features are a hallmark of epilepsy, and abnormal frequency and network features are apparent in EEGs from people with idiopathic generalized epilepsy in both ictal and interictal states. Here, we characterize differences in the resting-state EEG of individuals with juvenile myoclonic epilepsy and assess factors influencing the heterogeneity of EEG features. We collected EEG data from 147 participants with juvenile myoclonic epilepsy through the Biology of Juvenile Myoclonic Epilepsy study. Ninety-five control EEGs were acquired from two independent studies [Chowdhury . (2014) and EU-AIMS Longitudinal European Autism Project]. We extracted frequency and functional network-based features from 10 to 20 s epochs of resting-state EEG, including relative power spectral density, peak alpha frequency, network topology measures and brain network ictogenicity: a computational measure of the propensity of networks to generate seizure dynamics. We tested for differences between epilepsy and control EEGs using univariate, multivariable and receiver operating curve analysis. In addition, we explored the heterogeneity of EEG features within and between cohorts by testing for associations with potentially influential factors such as age, sex, epoch length and time, as well as testing for associations with clinical phenotypes including anti-seizure medication, and seizure characteristics in the epilepsy cohort. -values were corrected for multiple comparisons. Univariate analysis showed significant differences in power spectral density in delta (2-5 Hz) ( = 0.0007, hedges' g = 0.55) and low-alpha (6-9 Hz) ( = 2.9 × 10, g = 0.80) frequency bands, peak alpha frequency ( = 0.000007, g = 0.66), functional network mean degree ( = 0.0006, g = 0.48) and brain network ictogenicity ( = 0.00006, g = 0.56) between epilepsy and controls. Since age ( = 0.009) and epoch length ( = 1.7 × 10) differed between the two groups and were potential confounders, we controlled for these covariates in multivariable analysis where disparities in EEG features between epilepsy and controls remained. Receiver operating curve analysis showed low-alpha power spectral density was optimal at distinguishing epilepsy from controls, with an area under the curve of 0.72. Lower average normalized clustering coefficient and shorter average normalized path length were associated with poorer seizure control in epilepsy patients. To conclude, individuals with juvenile myoclonic epilepsy have increased power of neural oscillatory activity at low-alpha frequencies, and increased brain network ictogenicity compared with controls, supporting evidence from studies in other epilepsies with considerable external validity. In addition, the impact of confounders on different frequency-based and network-based EEG features observed in this study highlights the need for careful consideration and control of these factors in future EEG research in idiopathic generalized epilepsy particularly for their use as biomarkers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9301584PMC
http://dx.doi.org/10.1093/braincomms/fcac180DOI Listing

Publication Analysis

Top Keywords

eeg features
24
juvenile myoclonic
20
myoclonic epilepsy
20
epilepsy controls
16
epilepsy
14
resting-state eeg
12
power spectral
12
spectral density
12
brain network
12
network ictogenicity
12

Similar Publications

Deep feature extraction and swarm-optimized enhanced extreme learning machine for motor imagery recognition in stroke patients.

J Neurosci Methods

September 2025

Department of Computer Science and Engineering, IIT (ISM) Dhanbad, Dhanbad, 826004, Jharkhand, India. Electronic address:

Background: Interpretation of motor imagery (MI) in brain-computer interface (BCI) applications is largely driven by the use of electroencephalography (EEG) signals. However, precise classification in stroke patients remains challenging due to variability, non-stationarity, and abnormal EEG patterns.

New Methods: To address these challenges, an integrated architecture is proposed, combining multi-domain feature extraction with evolutionary optimization for enhanced EEG-based MI classification.

View Article and Find Full Text PDF

Given the significant global health burden caused by depression, numerous studies have utilized artificial intelligence techniques to objectively and automatically detect depression. However, existing research primarily focuses on improving the accuracy of depression recognition while overlooking the explainability of detection models and the evaluation of feature importance. In this paper, we propose a novel framework named Enhanced Domain Adversarial Neural Network (E-DANN) for depression detection.

View Article and Find Full Text PDF

Epilepsy, a highly individualized neurological disorder, affects millions globally. Electroencephalography (EEG) remains the cornerstone for seizure diagnosis, yet manual interpretation is labor-intensive and often unreliable due to the complexity of multi-channel, high-dimensional data. Traditional machine learning models often struggle with overfitting and fail in fully capturing the highdimensional, temporal dynamics of EEG signals, restricting their clinical utility.

View Article and Find Full Text PDF

Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).

View Article and Find Full Text PDF

Introduction: Anti-N-methyl-D-aspartate receptor (NMDA-R) encephalitis is a neuropsychiatric disorder with additional psychiatric features caused by NMDA-R immunoglobulin G (IgG) antibodies in cerebrospinal fluid (CSF). This report presents the follow-up of a patient in whom we assumed mild NMDA-R encephalitis in the first psychotic episode.

Case Study: A patient with a prior episode of an acute polymorphic psychotic syndrome relapsed five and a half years later following a severe COVID-19 infection.

View Article and Find Full Text PDF