98%
921
2 minutes
20
Prior work suggests drought exacerbates US air quality by increasing surface ozone concentrations. We analyze 2005-2015 tropospheric column concentrations of two trace gases that serve as proxies for surface ozone precursors retrieved from the OMI/Aura satellite: Nitrogen dioxide (ΩNO NO proxy) and formaldehyde (ΩHCHO; VOC proxy). We find 3.5% and 7.7% summer drought enhancements (classified by SPEI) for ΩNO and ΩHCHO, respectively, corroborating signals previously extracted from ground-level observations. When we subset by land cover type, the strongest ΩHCHO drought enhancement (10%) occurs in the woody savannas of the Southeast US. By isolating the influences of precipitation and temperature, we infer that enhanced biogenic VOC emissions in this region increase ΩHCHO independently with both high temperature and low precipitation during drought. The strongest ΩNO drought enhancement (6.0%) occurs over Midwest US croplands and grasslands, which we infer to reflect the sensitivity of soil NO emissions to temperature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285578 | PMC |
http://dx.doi.org/10.1029/2020GL091520 | DOI Listing |
Biosaf Health
August 2025
Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, MS320, Reno 89557 Nevada, United States of America.
The role of personal protective equipment (PPE) in protecting against exposure to infectious agents and toxic chemicals is well-established. However, the global surge in PPE demand during the pandemic exposed challenges, including shortages and environmental impacts from disposable waste. Developing effective, scalable, and sustainable decontamination methods for the reuse of PPE is essential.
View Article and Find Full Text PDFStat Med
September 2025
Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA.
Studying the association between mixtures of environmental exposures and health outcomes can be challenging due to issues such as correlation among the exposures and non-linearities or interactions in the exposure-response function. For this reason, one common strategy is to fit flexible nonparametric models to capture the true exposure-response surface. However, once such a model is fit, further decisions are required when it comes to summarizing the marginal and joint effects of the mixture on the outcome.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. Electronic
Surface ozone (O) pollution has emerged as a regional environmental issue. Photochemical reactive species significantly impact O photochemical formation by regulating radicals and atmospheric oxidation capacity. This study focuses on O pollution in a southeastern coastal city, utilizing coordinated methods of filed observations and Photochemical Box Model to explore the pollution mechanisms and sensitivity analyses of typical reactive species (PAN, HCHO, and isoprene).
View Article and Find Full Text PDFSci Total Environ
September 2025
The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Soil and Water Sciences, The Hebrew University of Jerusalem, Rehovot, Israel. Electronic address:
Tropospheric ozone (O) is a major air pollutant that negatively affects human health and vegetation, and plays a central role in climate change and atmospheric chemistry. Current simulations of tropospheric O concentrations in climate and air-quality models are significantly limited by the inaccurate representation of O dry deposition rate-particularly in urban areas, where field measurements remain scarce. We hypothesize that O dry deposition in the urban environment is controlled by factors similar to those over vegetation, albeit via potentially different mechanisms.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
Reactive nitrogen plays critical roles in atmospheric chemistry, climate, and geochemical cycles, yet its sources in the marine atmosphere, particularly the cause of the puzzling daytime peaks of nitrous acid (HONO), remain unexplained. Here we reveal that iodide enhances HONO production during aqueous nitrate photolysis by over tenfold under typical marine conditions. Laboratory experiments and molecular simulations confirm that HONO formation from nitrate photolysis is a surface-dependent process, and the extreme surface propensity of iodide facilitates nitrate enrichment at interfaces, reducing the solvent cage effect and promoting HONO release.
View Article and Find Full Text PDF