Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Activin receptor-like kinase 2 (ALK2) is a transmembrane kinase receptor that mediates the signaling of the members of the TGF-β superfamily. The aberrant activation of ALK2 has been linked to the rare genetic disorder fibrodysplasia ossificans progressiva (FOP) and diffuse intrinsic pontine glioma (DIPG) that are associated with severely reduced life expectancy in pediatric patients. ALK2 has also been shown to play an essential role in iron metabolism by regulating hepcidin levels and affecting anemia of chronic disease. Thus, selective inhibition of ALK2 has emerged as a promising strategy for the treatment of multiple disorders. Herein, we report the discovery of a novel pyrazolopyrimidines series as highly potent, selective, and orally bioavailable inhibitors of ALK2. Structure-based drug design and systematic structure-activity relationship studies were employed to identify potent inhibitors displaying high selectivity against other ALK subtypes with good pharmacokinetic profiles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9290007PMC
http://dx.doi.org/10.1021/acsmedchemlett.2c00206DOI Listing

Publication Analysis

Top Keywords

discovery novel
8
novel pyrazolopyrimidines
8
potent selective
8
selective orally
8
orally bioavailable
8
bioavailable inhibitors
8
inhibitors alk2
8
alk2
6
pyrazolopyrimidines potent
4
alk2 activin
4

Similar Publications

The emergence of organoid models has significantly bridged the gap between traditional cell cultures/animal models and authentic human disease states, particularly for genetic disorders, where their inherent genetic fidelity enables more biologically relevant research directions and enhances translational validity. This review systematically analyzes established organoid models of genetic diseases across organs (e.g.

View Article and Find Full Text PDF

Low-grade non-muscle invasive bladder cancer is a specific category of bladder cancer with a favourable prognosis; however, its management presents several challenges. The risk of stage progression is very low, but approximately half of patients will experience recurrence within the first 5 years after diagnosis. This high propensity for recurrence, coupled with the threat of progression, mandates ongoing surveillance.

View Article and Find Full Text PDF

MAFLD: a ferroptotic disease.

Trends Mol Med

September 2025

Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA. Electronic address:

Ferroptosis, a regulated cell death pathway driven by iron-catalyzed lipid peroxidation, has recently been implicated as a major cause of hepatic injury in metabolic dysfunction-associated fatty liver disease (MAFLD). This review highlights how the identification of hyperoxidized peroxiredoxin 3 (PRDX3) as a ferroptosis-specific marker has led to the discovery that ferroptosis contributes to liver injury in MAFLD, and summarizes other emerging evidence connecting ferroptosis to MAFLD pathogenesis. These new findings suggest that dietary fat composition and genetic variants such as PNPLA3(I148M) may affect the progression of MAFLD by regulating cellular sensitivity to ferroptosis.

View Article and Find Full Text PDF

Advances in nanopore direct RNA sequencing and its impact on biological research.

Biotechnol Adv

September 2025

Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, China Jiliang University, Hangzhou 310018, China. Electronic address:

Nanopore direct RNA sequencing (DRS) is a transformative technology that enables full-length, single-molecule sequencing of native RNA, capturing transcript isoforms and preserving epitranscriptomic modifications without cDNA conversion. This review outlines key advances in DRS, including optimized protocols for mRNA, rRNA, tRNA, circRNA, and viral RNA, as well as analytical tools for isoform quantification, poly(A) tail measurement, fusion transcript identification, and base modification profiling. We highlight how DRS has redefined transcriptomic studies across diverse systems-from uncovering novel transcripts and alternative splicing events in cancer, plants, and parasites to enabling the direct detection of m6A, m5C, pseudouridine, and RNA editing events.

View Article and Find Full Text PDF

Heparanase as a therapeutic target for mitigating cancer progression.

Biochim Biophys Acta Rev Cancer

September 2025

School of Applied Sciences, Suresh Gyan Vihar University, Jaipur 302017, Rajasthan, India. Electronic address:

Cancer has been one of the primary causes of mortality for the last three decades across the globe, with contemporary treatment modalities often falling short due to limitations viz. drug resistance, toxicity, and the inability to target molecular mechanisms of tumor progression. Among various intracellular mediators implicated in cancer progression, heparanase, a heparan sulfate degrading enzyme, has been pivotal by facilitating tumor invasion, angiogenesis, and metastasis.

View Article and Find Full Text PDF