Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

During meiosis, DNA double-strand breaks (DSBs) occur throughout the genome, a subset of which are repaired to form reciprocal crossovers between chromosomes. Crossovers are essential to ensure balanced chromosome segregation and to create new combinations of genetic variation. Meiotic DSBs are formed by a topoisomerase-VI-like complex, containing catalytic (e.g. SPO11) proteins and auxiliary (e.g. PRD3) proteins. Meiotic DSBs are formed in chromatin loops tethered to a linear chromosome axis, but the interrelationship between DSB-promoting factors and the axis is not fully understood. Here, we study the localisation of SPO11-1 and PRD3 during meiosis, and investigate their respective functions in relation to the chromosome axis. Using immunocytogenetics, we observed that the localisation of SPO11-1 overlaps relatively weakly with the chromosome axis and RAD51, a marker of meiotic DSBs, and that SPO11-1 recruitment to chromatin is genetically independent of the axis. In contrast, PRD3 localisation correlates more strongly with RAD51 and the chromosome axis. This indicates that PRD3 likely forms a functional link between SPO11-1 and the chromosome axis to promote meiotic DSB formation. We also uncovered a new function of SPO11-1 in the nucleation of the synaptonemal complex protein ZYP1. We demonstrate that chromosome co-alignment associated with ZYP1 deposition can occur in the absence of DSBs, and is dependent on SPO11-1, but not PRD3. Lastly, we show that the progression of meiosis is influenced by the presence of aberrant chromosomal connections, but not by the absence of DSBs or synapsis. Altogether, our study provides mechanistic insights into the control of meiotic DSB formation and reveals diverse functional interactions between SPO11-1, PRD3 and the chromosome axis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9342770PMC
http://dx.doi.org/10.1371/journal.pgen.1010298DOI Listing

Publication Analysis

Top Keywords

chromosome axis
28
spo11-1 prd3
16
localisation spo11-1
12
meiotic dsb
12
dsb formation
12
meiotic dsbs
12
chromosome
9
axis
9
spo11-1
8
prd3 chromosome
8

Similar Publications

The impact of burdock tea (BT) made from burdock () roots in normal individuals and animal models remains largely unknown, particularly on lung protection. This study examined responses of oxidative stress, inflammation, and the microbiota within the cecum and the lung to BT treatment in healthy Wistar rats. A middle-dose BT reduced the Chao1 and Shannon indices, and both low and middle doses induced structural alterations in the cecal microbiota.

View Article and Find Full Text PDF

Preeclampsia (PE), a devastating pregnancy complication affecting 5% of gravidas worldwide, exhibits poorly characterized connections between mitochondrial dysfunction and immune dysregulation. This study aims to identify integrated mitochondrial-immune biomarkers for preeclampsia by multi-omics analysis of severe PE cohorts, enabling mechanistic insights and diagnostic potential. We developed a novel computational framework integrating multi-omics analysis (GSE10588 transcriptomics), machine learning (LASSO-SVM algorithm), and molecular dynamics simulation.

View Article and Find Full Text PDF

The measurement of three-dimensional genome folding in the nucleus, mostly through Hi-C methods, is expressed as contact frequencies between genomic segments, without anchoring to physical axes of the spherical nucleus. Here, we mapped the chromatin contacts along nuclear radial axis and built radial score by factoring in contact frequencies. The chromatin high-order structures exhibit rich diversity along radial axis.

View Article and Find Full Text PDF

Budding yeasts present an especially challenging geometry for segregation of chromosomes, which must be delivered across the narrow mother-bud neck into the bud. Studies in the model yeast Saccharomyces cerevisiae have revealed an elaborate set of mechanisms that selectively orient one mitotic spindle pole toward the bud and then drive spindle elongation along the mother-bud axis, ensuring nuclear segregation between mother and bud. It is unclear how these pathways might be adapted to yield similar precision in more complex cell geometries.

View Article and Find Full Text PDF

In swine breeding programs, it has now become critically important to emphasize selection for resilience to external environmental stress factors that have negatively impacted the productivity of pigs, such as those due to climate change induced temperature increases, or the intensification of housing environments. Secretion of cortisol, a neurophysiological change mediated by the hypothalamic-pituitary-adrenal axis, is a central mechanism in the biological stress response. This hormone is closely related to pig robustness and health and can serve as an informative indicator of stress resistance and robustness in pigs.

View Article and Find Full Text PDF