Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite being the most abundantly secreted immunoglobulin isotype, the pattern of reactivity of immunoglobulin A (IgA) antibodies toward each individual's own gut commensal bacteria still remains elusive. By colonizing germ-free mice with defined commensal bacteria, we found that the binding specificity of bulk fecal and serum IgA toward resident gut bacteria resolves well at the species level and has modest strain-level specificity. IgA hybridomas generated from lamina propria B cells of gnotobiotic mice showed that most IgA clones recognized a single bacterial species, whereas a small portion displayed cross-reactivity. Orally administered hybridoma-produced IgAs still retained bacterial antigen binding capability, implying the potential for a new class of therapeutic antibodies. Species-specific IgAs had a range of strain specificities. Given the distinctive bacterial species and strain composition found in each individual's gut, our findings suggest the IgA antibody repertoire is shaped uniquely to bind "self" gut bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9421563PMC
http://dx.doi.org/10.1126/sciimmunol.abg3208DOI Listing

Publication Analysis

Top Keywords

individual's gut
8
commensal bacteria
8
gut bacteria
8
bacterial species
8
gut
5
iga
5
immunoglobulin antibody
4
antibody composition
4
composition sculpted
4
sculpted bind
4

Similar Publications

Background: Intestinal cells receive incoming signals from neighboring cells and microbial communities. Upstream signaling pathways transduce these signals to reach transcription factors (TFs) that regulate gene expression. In inflammatory bowel disease (IBD), most single nucleotide polymorphisms (SNPs) are in non-coding genomic regions containing TF binding sites.

View Article and Find Full Text PDF

Background: A plant-focused, healthy dietary pattern, such as the Mediterranean diet enriched with dietary fiber, polyphenols, and polyunsaturated fats, is well known to positively influence the gut microbiota. Conversely, a processed diet high in saturated fats and sugars negatively impacts gut diversity, potentially leading to weight gain, insulin resistance, and chronic, low-grade inflammation. Despite this understanding, the mechanisms by which the Mediterranean diet impacts the gut microbiota and its associated health benefits remain unclear.

View Article and Find Full Text PDF

White spot syndrome virus (WSSV), the causative agent of white spot disease, remains a serious threat to crustacean aquaculture. Infecting a wide range of crustaceans, host species exhibit varying susceptibility and mortality rates. Mud crabs, Scylla serrata, a high-value aquaculture commodity across the Indo-Pacific region, are known to be relatively resistant to WSSV.

View Article and Find Full Text PDF

From the Lab to the Plate: How Gut Microbiome Science is Reshaping Our Diet.

J Nutr

September 2025

University Paris-Saclay, INRAE, MetaGenoPolis, 78350 Jouy-en-Josas, France; University Paris-Saclay, INRAE, MICALIS, 78350 Jouy-en-Josas, France. Electronic address:

This review explores the century-long trajectory of gut microbiome research and its contribution to shaping our modern diet. It further highlights the transformative potential of current discoveries to revolutionize future dietary habits and nutritional practices. From the pioneering work of E.

View Article and Find Full Text PDF

Background: Dietary fiber supports metabolic health via microbial fermentation, producing short-chain fatty acids (SCFAs). However, metabolic responses to fiber vary between individuals, potentially due to differences in gut microbiota composition. The Prevotella-to-Bacteroides (P/B) ratio has emerged as a potential biomarker for fiber responsiveness.

View Article and Find Full Text PDF