Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Vertebrate growth can be phenotypically plastic in response to predator-prey and competitive interactions. It is unknown however, if it can be plastic in response to mutualistic interactions. Here we investigate plasticity of vertebrate growth in response to variation in mutualistic interactions, using clown anemonefish and their anemone hosts. In the wild, there is a positive correlation between the size of the fish and the size of the anemone, but the cause of this correlation is unknown. Plausible hypotheses are that fish exhibit growth plasticity in response to variation in food or space provided by the host. In the lab, we pair individuals with real anemones of various sizes and show that fish on larger anemones grow faster than fish on smaller anemones. By feeding the fish a constant food ration, we exclude variation in food availability as a cause. By pairing juveniles with artificial anemones of various sizes, we exclude variation in space availability as a single cause. We argue that variation in space availability in conjunction with host cues cause the variability in fish growth. By adjusting their growth, anemonefish likely maximize their reproductive value given their anemone context. More generally, we demonstrate vertebrate growth plasticity in response to variation in mutualistic interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9293916PMC
http://dx.doi.org/10.1038/s41598-022-14662-4DOI Listing

Publication Analysis

Top Keywords

vertebrate growth
16
response variation
16
growth plasticity
12
plasticity response
12
variation mutualistic
12
mutualistic interactions
12
plastic response
8
variation food
8
anemones sizes
8
exclude variation
8

Similar Publications

Background: Neighborhoods resulting from rapid urbanization processes are often saturated with eateries for local communities, potentially increasing exposure to unhealthy foods and creating diabetogenic residential habitats.

Objective: We examined the association between proximity of commercial food outlets to local neighborhood residences and type 2 diabetes (T2D) cases to explore how local T2D rates vary by location and provide policy-driven metrics to monitor food outlet density as a potential control for high local T2D rates.

Methods: This cross-sectional ecological study included 11,354 patients with active T2D aged ≥20 years geocoded using approximate neighborhood residence aggregated to area-level rates and counts by subdistricts (mukims) in Penang, northern Malaysia.

View Article and Find Full Text PDF

For effective treatment of bacterial infections, it is essential to identify the species causing the infection as early as possible. Current methods typically require hours of overnight culturing of a bacterial sample and a larger quantity of cells to function effectively. This study uses one-hour phase-contrast time-lapses of single-cell bacterial growth collected from microfluidic chip traps, also known as a "mother machine".

View Article and Find Full Text PDF

Background: When analyzing cells in culture, assessing cell morphology (shape), confluency (density), and growth patterns are necessary for understanding cell health. These parameters are generally obtained by a skilled biologist inspecting light microscope images, but this can become very laborious for high-throughput applications. One way to speed up this process is by automating cell segmentation.

View Article and Find Full Text PDF

» Early-onset scoliosis (EOS) causes restrictive lung disease, secondary to deformation of the thoracic cavity, stiffening of the chest wall, and weakening of the respiratory muscles.» Early spinal fusion has been shown to limit thoracic growth and be associated with poor pulmonary outcomes. This has led to the rise of growth-friendly surgical techniques to maximize thoracic growth.

View Article and Find Full Text PDF

In adult mammals and other highly developed animals, incomplete wound healing, scar formation, and fibrosis occur. No treatment for complete tissue regeneration is currently available. However, in mice, at up to 13 days of gestation, early embryonic wounds regenerate without visible scarring.

View Article and Find Full Text PDF