98%
921
2 minutes
20
The hematological module of the Athlete's Biological Passport (ABP) identifies doping methods and/or substances used to increase the blood's capacity to transport or deliver oxygen to the tissues. Recombinant human erythropoietin (rhEPOs) are doping substances known to boost the production of red blood cells and might have an effect on the blood biomarkers of the ABP. However, hypoxic exposure influences these biomarkers similarly to rhEPOs. This analogous impact complicates the ABP profiles' interpretation by antidoping experts. The present study aimed to collect and identify, through a literature search, the physiological effects on ABP blood biomarkers induced by these external factors. A total of 43 studies were selected for this review. A positive correlation (R = 0.605, r = 0.778, < 0.001) was identified between the hypoxic dose and the increase in hemoglobin concentration (HGB) percentage. In addition, the change in the reticulocyte percentage (RET%) has been identified as one of the most sensitive parameters to rhEPO use. The mean effects of rhEPO on blood parameters were greater than those induced by hypoxic exposure (1.7 times higher for HGB and RET% and 4 times higher for hemoglobin mass). However, rhEPO micro-doses have shown effects that are hardly distinguishable from those identified after hypoxic exposure. The results of the literature search allowed to identify temporal and quantitative evolution of blood parameters in connection with different hypoxic exposure doses, as well as different rhEPOs doses. This might be considered to provide justified and well-documented interpretations of physiological changes in blood parameters of the Athlete Biological Passport.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9282833 | PMC |
http://dx.doi.org/10.3389/fspor.2022.864532 | DOI Listing |
Am J Physiol Regul Integr Comp Physiol
September 2025
United States Army Research Institute of Environmental Medicine, Natick, MA, US.
Unlabelled: Insulin resistance has been associated with acute mountain sickness (AMS) risk, but the influence of active ascent is unclear.
Methods: Thirty-two unacclimatized Soldiers (23±4yr; 80±14 kg) were tested at baseline residence (BLR), hiked ~5 km (n=16) or were driven (n=16) to 4,300 m, and stayed for 4 days (~66 h). Venous blood was taken each morning at BLR and during high altitude (HA) exposure days 2-4 (HA2-4) and the evening on day 1 at HA (HA1).
Front Med (Lausanne)
August 2025
Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Background: In critically ill patients with septic shock, adequate oxygenation is crucial and hypoxia should be avoided. However, hyperoxia has been linked to the formation of reactive oxygen species, inflammation, and vasoconstriction, which could potentially harm critically ill intensive care patients. Therefore, this study aimed to examine the association between oxygen exposure and mortality and to define optimal oxygen target ranges for this specific group of patients.
View Article and Find Full Text PDFCureus
August 2025
Acute Medicine, Weston General Hospital, University Hospitals Bristol and Weston, Weston-super-Mare, GBR.
Methemoglobinemia is an uncommon yet potentially life-threatening condition that results from the oxidation of iron from the ferrous (Fe²⁺) to the ferric (Fe³⁺) state, rendering hemoglobin unable to effectively transport oxygen. This translates into a state of functional hypoxia despite adequate arterial oxygen tension. Among the various causes of acquired methemoglobinemia, recreational inhalation of alkyl nitrites, widely known as "poppers," is a notable but underrecognized trigger.
View Article and Find Full Text PDFEnviron Int
September 2025
State Key Laboratory of Environmental Chemistry and Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Sciences, Northeastern University, Shenyang 110004, China; School of Environment, Hangzhou Institute for Advanced Study, Univ
Exposure to nanoplastics (NPs), a pervasive environmental pollutant, presents potential health risks. Pulmonary exposure to NPs has been shown to disrupt both pulmonary metabolic status and immune homeostasis, leading to concerns about their impact on respiratory health and systemic well-being. However, the underlying linkage and mechanisms remain elusive.
View Article and Find Full Text PDFJCI Insight
September 2025
Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, United States of America.
Impaired muscle regrowth in aging is underpinned by reduced pro-inflammatory macrophage function and subsequently impaired muscle cellular remodeling. Macrophage phenotype is metabolically controlled through TCA intermediate accumulation and activation of HIF1A. We hypothesized that transient hypoxia following disuse in old mice would enhance macrophage metabolic inflammatory function thereby improving muscle cellular remodeling and recovery.
View Article and Find Full Text PDF