Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Post-translational modifications remarkably regulate proteins' biological function. Small molecules such as reactive thiols, metabolites, and drugs may covalently modify the proteins and cause structural changes. This study reports the covalent modification and noncovalent interaction of insulin and captopril, an FDA-approved antihypertensive drug, through mass spectrometric and computation-based approaches. Mass spectrometric analysis shows that captopril modifies intact insulin, reduces it into its "A" and "B" chains, and covalently modifies them by forming adducts. Since captopril has a reactive thiol group, it might reduce the insulin dimer or modify it by reacting with cysteine residues. This was proven with dithiothreitol treatment, which reduced the abundance of captopril adducts of insulin A and B chains and intact Insulin. Liquid chromatography tandem mass spectrometric analysis identified the modification of a total of four cysteine residues, two in each of the A and B chains of insulin. These modifications were identified to be Cys6 and Cys7 of the A chain and Cys7 and Cys19 of the B chain. Mass spectrometric analysis indicated that captopril may simultaneously modify the cysteine residues of intact insulin or its subunits A and B chains. Biophysical studies involving light scattering and thioflavin T assay suggested that the binding of captopril to the protein leads to the formation of aggregates. Docking and molecular dynamics studies provided insights into the noncovalent interactions and associated structural changes in insulin. This work is a maiden attempt to understand the detailed molecular interactions between captopril and insulin. These findings suggest that further investigations are required to understand the long-term effect of drugs like captopril.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9280767PMC
http://dx.doi.org/10.1021/acsomega.2c00660DOI Listing

Publication Analysis

Top Keywords

mass spectrometric
16
structural changes
12
spectrometric analysis
12
intact insulin
12
cysteine residues
12
insulin
10
captopril
9
changes insulin
8
mass
5
investigation captopril-insulin
4

Similar Publications

Ionic liquids (ILs) are a class of organic salts with melting points below 100°C. Owing to their unique chemical and physical properties, they are used as solvents and catalysts in various chemical transformations, progressively replacing common volatile organic solvents (VOCs) in green synthetic applications. However, their intrinsic ionic nature can restrict the use of mass spectrometric techniques to monitor the time progress of a reaction occurring in an IL medium, thus preventing one from following the formation of the reaction products or intercepting the reaction intermediates.

View Article and Find Full Text PDF

Introduction: is a spiral-shaped Gram-negative, enterohepatic bacterium classified as a conditional pathogen (pathogenicity group 2). It is known to cause bacteremia and a variety of other diseases in humans. In particular, has been shown to impair intracellular cholesterol metabolism when interacting with macrophages, leading to foam cell formation.

View Article and Find Full Text PDF

Background: Functional and structural studies of the brain highlight the importance of white matter alterations in schizophrenia. However, molecular studies of the alterations associated with the disease remain insufficient.

Aim: To study the lipidome and transcriptome composition of the corpus callosum in schizophrenia, including analyzing a larger number of biochemical lipid compounds and their spatial distribution in brain sections, and corpus callosum transcriptome data.

View Article and Find Full Text PDF

A method for determination of ten kinds of sweeteners in soybean products by multi-plug filtration cleanup (-PFC) combined with ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established. The sample was extracted with acetonitrile (containing 1% formic acid), degreased by using -hexane liquid-liquid extraction and purified by solid phase extraction using an -PFC column (Oasis PRiME HLB). The analytes were separated by using a Waters ACQUITY UPLC® BEH C (2.

View Article and Find Full Text PDF

The properties of Ocicmum gratissimum aqueous extract against ultraviolet-C-induced inflammation.

J Ethnopharmacol

September 2025

Department of Bachelor's Degree Program for Indigenous Peoples in Senior Health and Care Management, National Taitung University, Taitung, 950, Taiwan; Master Program in Biomedical Science, National Taitung University, Taitung, 950, Taiwan; Elderly Industry Sustainable Low Carbon Research Center, Na

Ethnopharmacological Relevance: Ocimum gratissimum L. commonly known as basil, is an herb-like plant frequently mentioned in ethnopharmacological studies due to its widespread availability in local communities and its widespread use in treating inflammatory conditions. In a previous study, we demonstrated that aqueous extracts of Ocimum gratissimum (OGE), which are rich in plant polyphenols such as caffeic acid and isoflavones, can protect skin cells from UVC-induced inflammation and damage in migration and proliferation.

View Article and Find Full Text PDF