Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Infection with SARS-CoV-2 has highly variable clinical manifestations, ranging from asymptomatic infection through to life-threatening disease. Host whole blood transcriptomics can offer unique insights into the biological processes underpinning infection and disease, as well as severity. We performed whole blood RNA Sequencing of individuals with varying degrees of COVID-19 severity. We used differential expression analysis and pathway enrichment analysis to explore how the blood transcriptome differs between individuals with mild, moderate, and severe COVID-19, performing pairwise comparisons between groups. Increasing COVID-19 severity was characterised by an abundance of inflammatory immune response genes and pathways, including many related to neutrophils and macrophages, in addition to an upregulation of immunoglobulin genes. In this study, for the first time, we show how immunomodulatory treatments commonly administered to COVID-19 patients greatly alter the transcriptome. Our insights into COVID-19 severity reveal the role of immune dysregulation in the progression to severe disease and highlight the need for further research exploring the interplay between SARS-CoV-2 and the inflammatory immune response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9288817PMC
http://dx.doi.org/10.1038/s41598-022-15547-2DOI Listing

Publication Analysis

Top Keywords

covid-19 severity
12
blood rna
8
covid-19 patients
8
inflammatory immune
8
immune response
8
covid-19
6
severity
5
characterisation blood
4
rna host
4
host response
4

Similar Publications

Erythrodontium julaceum, Marchantia polymorpha, and Plagiochila bantamensis are widely distributed bryophytes in Vietnam. However, comprehensive chemical and biological data on their composition remain limited. Bio-guided isolation based on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) M inhibition was applied to these species, resulting in the identification of 23 metabolites.

View Article and Find Full Text PDF

Protective Role of Apelin in a Mouse Model of Post-Intensive Care Syndrome.

Am J Respir Cell Mol Biol

September 2025

University of Toronto, Interdepartmental Division of Critical Care Medicine, Toronto, Ontario, Canada.

Post-Intensive Care Syndrome (PICS) is a serious condition involving physical weakness, depression, and cognitive impairment that develop during or after an intensive care unit (ICU) stay, often resulting in long-term declines in quality of life. Patients with acute respiratory distress syndrome (ARDS) and severe COVID-19 are at particularly high risk, yet the molecular mechanisms underlying PICS remain poorly understood. Here, we identify impaired Apelin-APJ signaling as a potential contributor to PICS pathogenesis via disruption of inter-organ homeostasis.

View Article and Find Full Text PDF

Purpose: This exploratory study examined if hearing handicap in older adults affected listening-related fatigue during health care interactions and explored whether different face mask types worn during the coronavirus disease 2019 (COVID-19) pandemic influenced this association.

Method: A cross-sectional observational study among community-dwelling adults aged 60 years and older receiving care at an academic health care system outpatient audiology or otolaryngology clinics was conducted. Eligible participants completed and returned a mail-in self-reported packet including the Hearing Handicap Inventory for the Elderly (Screener Version; HHIE-S) and the 10-item Vanderbilt Fatigue Scale for Adults (VFS-A-10).

View Article and Find Full Text PDF

Coronavirus, a large family of positive-sense RNA viruses, are responsible for both mild and severe respiratory illnesses, ranging from the common cold to life-threatening conditions. Despite significant advances in vaccine and antiviral development, the high mutability of human coronaviruses (HCoVs), such as SARS-CoV-2, presents a major challenge in treating these infections. Effective, broad-spectrum antiviral drugs are urgently needed to address both current and future HCoV outbreaks.

View Article and Find Full Text PDF

While human autopsy samples have provided insights into pulmonary immune mechanisms associated with severe viral respiratory diseases, the mechanisms that contribute to a clinically favorable resolution of viral respiratory infections remain unclear due to the lack of proper experimental systems. Using mice co-engrafted with a genetically matched human immune system and fetal lung xenograft (fLX), we mapped the immunological events defining successful resolution of SARS-CoV-2 infection in human lung tissues. Viral infection is rapidly cleared from fLX following a peak of viral replication, histopathological manifestations of lung disease and loss of AT2 program, as reported in human COVID-19 patients.

View Article and Find Full Text PDF