98%
921
2 minutes
20
Purpose: Causative factors of breast cancer include infections, such as Epstein-Barr virus (EBV) infection. The aim of this study was to analyze the clinicopathological features of EBV-positive (IBC) and determine if EBV affects programmed cell death receptor 1 (PD-1)/PD ligand 1 (PD-L1) expression in IBC, similar to other EBV-infected tumors with PD-L1/PD-1 expression.
Methods: We collected 140 samples of IBC tissues and 25 samples of adjacent tissues. All patients were followed-up by telephone from the day of surgery to December 2020. Chromogenic in-situ hybridization was performed to evaluate EBV-encoded RNA (EBER). Immunohistochemistry was performed to evaluate PD-L1 and PD-1 expressions. The correlation between PD1/PDL1 expression and clinicopathological features was also analyzed.
Results: EBER was detected in 57 of 140 (40.7%) IBC tissues and not detected in any adjacent tissue (P < 0.05). Clinicopathologic features of patients were consistent with EBV-associated IBC. EBV infection was correlated with the mass size, menopausal status, axillary lymph node metastasis, vascular invasion, Ki-67 index, clinical stage, and estrogen receptor and progesterone receptor expressions (all P < 0.05), but not with the histological type, invasive ductal carcinoma histological grade, or human epidermal growth factor receptor 2 (HER2) expression (all P > 0.05). The positive rate of PD-1/PD-L1 expression was higher in the EBV-positive group than in the EBV-negative group (P < 0.05). The Kaplan-Meier univariate survival analysis showed that EBV was associated with poor disease-free survival and overall survival in patients with IBC. PD-L1/PD-1 expression could predict a poor prognosis.
Conclusions: In this study, clinicopathologic characteristics of patients were consistent with EBV-infected IBC. Patients with EBV-positive breast cancer were more likely to have elevated PD-1/PDL-1 expression compared to those with EBV-negative breast cancer. This finding could serve as a basis to explore therapeutic targets, particularly immunotherapy, for patients with IBC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287995 | PMC |
http://dx.doi.org/10.1186/s13000-022-01234-3 | DOI Listing |
BMC Cancer
September 2025
Klinik für Innere Medizin II, Universitätsklinikum Jena, Am Klinikum 1, Jena, 07747, Germany.
Acta Pharmacol Sin
September 2025
Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
Chemotherapeutic resistance is a significant issue in the treatment of breast cancer, which is related to pyroptosis inhibition. Increasing evidence suggests that long non-coding RNAs (lncRNAs) contribute to tumorigenesis and drug resistance. In this study we investigated the role of the lncRNA STMN1P2 in doxorubicin resistance in breast cancer, as well as its correlation with pyroptosis inhibition.
View Article and Find Full Text PDFJ Hum Genet
September 2025
Division of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Comprehensive genomic profiling (CGP) expands treatment options for solid tumor patients and identifies hereditary cancers. However, in Japan, confirmatory tests have been conducted in only 31.6% of patients with presumed germline pathogenic variants (GPVs) detected through tumor-only testing.
View Article and Find Full Text PDFCardiovasc Intervent Radiol
September 2025
The Department of Radiology, Wakayama Medical University, Wakayama, Japan.
Purpose: Recent advancements in medical technologies have made trans-arterial treatment of breast cancer feasible. Consequently, understanding the vascular anatomies of breast cancers and axillary lymph node metastases has become indispensable for sophisticated treatments. The aim of this study was to determine the vascular anatomy of the breast, which is crucial for trans-arterial chemoembolization in patients with breast cancer.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Preventive Medicine, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, 90033, California, USA.