98%
921
2 minutes
20
SBA-15 has recently emerged as a potential material for the catalytic conversion of large molecules. Usually, SBA-15 has a low content of aluminum due to the conventional acidic synthesis medium. Although a few approaches have been adopted to prepare Al-SBA-15 with a high alumina content, it is still challenging to prepare well-ordered Al-SBA-15 with a high alumina content. Here, we demonstrate a facile synthesis process in neutral mediums for the grafting of Al into the framework of SBA-15. This approach relies mainly on the dissociation of Si-O-Si bonds and the polymerization of Si-O-Si/Al bonds promoted by sodium persulfate (SPS) in neutral mediums. In this way, well-ordered AlSBA-15 with a high aluminum content and enhanced acidity was obtained. Results of X-ray fluorescence spectroscopy (XRF) showed an (SiO)/(AlO) ratio of 13.7, much lower than that of the conventional sample (21.7) obtained in acidic medium. The characterization results indicated the presence of a well-ordered Al-containing mesophase with high hydrothermal stability. Notably, the Al content and the acidity of AlSBA-15 can be tuned by changing the SPS amount.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.2c01571 | DOI Listing |
Mikrochim Acta
September 2025
Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.
We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.
View Article and Find Full Text PDFSmall Methods
September 2025
Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics, Science and Technology, Hebei University, Baoding, 071002, China.
As a new generation of high-energy-density energy storage system, solid-state aluminum-ion batteries have attracted much attention. Nowadays polyethylene oxide (PEO)-based electrolytes have been initially applied to Lithium-ion batteries due to their flexible processing and good interfacial compatibility, their application in aluminum-ion batteries still faces problems. To overcome the limitations in aluminum-ion batteries-specifically, strong Al coordination suppressing ion dissociation, high room-temperature crystallinity, and inadequate mechanical strength-this study develops a blended polymer electrolyte (BPE) of polypropylene carbonate (PPC) and PEO.
View Article and Find Full Text PDFAdv Mater
September 2025
Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland.
AlN is a core material widely used as a substrate and heat sink in various electronic and optoelectronic devices. Introducing luminescent properties into intrinsic AIN opens new opportunities for next-generation intelligent sensors, self-powered displays, and wearable electronics. In this study, the first evidence is presented of AlN crystals exhibiting satisfactory mechanoluminescence (ML), photoluminescence (PL), and afterglow performance, demonstrating their potential as novel multifunctional optical sensors.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Suzuki Proctology-Moriguchi Internal Medicine Clinic, Morioka, Iwate, Japan.
Rationale: Prolapsed hemorrhoids can impair quality of life due to associated symptoms such as pain. While hemorrhoidectomy is considered the gold standard for treating prolapsed hemorrhoids, this procedure inevitably involves complications such as postoperative pain, bleeding, and delayed recovery. Therefore, there is an increasing need for treatment options that are immediate, effective, and minimally invasive, while also taking into account patients' physical and social backgrounds, preferences, and values.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
Integration of ultrathin, high-quality gate insulators is critical to the success of two-dimensional (2D) semiconductor transistors in next-generation nanoelectronics. Here, we investigate the impact of atomic layer deposition (ALD) precursor choice on the nucleation and growth of insulators on monolayer MoS. Surveying a series of aluminum (AlO) precursors, we observe that increasing the length of the ligands reduces the nucleation delay of alumina on monolayer MoS, a phenomenon that we attribute to improved van der Waals dispersion interactions with the 2D material.
View Article and Find Full Text PDF