Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Supercontinuum (SC) light sources hold versatile applications in many fields ranging from imaging microscopic structural dynamics to achieving frequency comb metrology. Although such broadband light sources are readily accessible in the visible and near infrared regime, the ultraviolet (UV) extension of SC spectrum is still challenging. Here, we demonstrate that the joint contribution of strong field ionization and quantum resonance leads to the unexpected UV continuum radiation spanning the 100 nm bandwidth in molecular nitrogen ions. Quantum coherences in a bunch of ionic levels are found to be created by dynamic Stark-assisted multiphoton resonances following tunneling ionization. We show that the dynamical evolution of the coherence-enhanced polarization wave gives rise to laser-assisted continuum emission inside the laser field and free-induction decay after the laser field, which jointly contribute to the SC generation together with fifth harmonics. As proof of principle, we also show the application of the SC radiation in the absorption spectroscopy. This work offers an alternative scheme for constructing exotic SC sources, and opens up the territory of ionic quantum optics in the strong-field regime.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9283425PMC
http://dx.doi.org/10.1038/s41467-022-31824-0DOI Listing

Publication Analysis

Top Keywords

laser field
12
light sources
8
ultraviolet supercontinuum
4
supercontinuum generation
4
generation driven
4
driven ionic
4
ionic coherence
4
coherence strong
4
strong laser
4
field
4

Similar Publications

Hair-Like Flexible Airflow Sensor for Large-Area Airflow Sensing.

Adv Sci (Weinh)

September 2025

School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, 510641, China.

Recently, flexible airflow sensors have attracted significant attention due to their impressive characteristics and capabilities for airflow sensing. However, the development of high-performance flexible airflow sensors capable of sensing airflow over large areas remains a challenge. In this work, it is proposed that a hair-like flexible airflow sensor, based on laser direct writing and electrostatic flocking, offers an efficient technology for airflow sensing.

View Article and Find Full Text PDF

Magnetic nanoparticles are widely explored in biomedical applications, particularly as MRI contrast agents and for magnetic hyperthermia. However, their photothermal capabilities under near-infrared (NIR) irradiation remain underexplored in realistic, tissue-like environments. This study provides a comprehensive assessment of ultrasmall FeO nanoparticles (9.

View Article and Find Full Text PDF

The absorption of laser energy by plasma is of paramount importance for various applications. Collisional and resonant processes are often invoked for this purpose. However, in some contexts (e.

View Article and Find Full Text PDF

Molybdenum disulfide (MoS) has recently emerged as a promising material for the development of triboelectric nanogenerators (TENGs) owing to its inherently negative triboelectric properties when paired with polymeric layers, along with its notable transparency and mechanical flexibility. However, MoS-based TENGs operating in the contact-separation mode encounter critical limitations, including mechanical wear and limited triboelectric performance, particularly within the constraints of conventional 2D geometries. This paper reports the novel one-step laser-assisted synthesis of hemispherical MoS through the controlled nucleation and growth of MoS precursor seeds.

View Article and Find Full Text PDF

Objectives: To synthesize a temperature-responsive multimodal motion microrobot (MMMR) using temperature and magnetic field-assisted microfluidic droplet technology to achieve targeted drug delivery and controlled drug release.

Methods: Microfluidic droplet technology was utilized to synthesize the MMMR by mixing gelatin with magnetic microparticles. The microrobot possessed a magnetic anisotropy structure to allow its navigation and targeted drug release by controlling the temperature field and magnetic field.

View Article and Find Full Text PDF