98%
921
2 minutes
20
Albeit reported substantial sorbents for elimination of TcO, the issue of secondary contamination caused by released counterions (such as NO) from the cationic metal-organic framework (MOF) has not come into the sufficient limelight for researchers. Herein, our efforts are dedicated to settle the matter through synthesis of NiCl based on the cationic MOF (ZJU-X4). Less harmful chlorides are used as exchangeable anions for replacing hazardous anions. Notably, ZJU-X4 exhibited fast sorption kinetics, high sorption capacity of 395 mg/g, decent selectivity, and excellent reusability in four recycles. The results of ion chromatography revealed that the released chloride ion was equal to sorption of target ions, and pair distribution functions were employed to analyze the changes in ZJU-X4 after sorption of ReO, clearly elucidating the anion-exchange mechanism. Furthermore, in the dynamic sorption experiments, ReO could be facilely and effectively removed and recovered, showing the value of practical applications. This work indicated that cationic MOF-based metal chloride salts would be a better choice for anionic sorbents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.2c01846 | DOI Listing |
Dalton Trans
September 2025
Department of Chemistry and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea.
The nanoscale environment within the void spaces of metal-organic frameworks (MOFs) can significantly influence the photoredox catalytic activity of encapsulated visible-light photoredox catalysts (PCs). To compare two isostructural PC@In-MOF systems, three cationic Ru(II) polypyridine complexes were successfully encapsulated within the mesoscale channels of the anionic framework of InTATB (HTATB = 4,4',4''--triazine-2,4,6-triyltribenzoic acid), which features a doubly interpenetrated framework structure. This encapsulation yielded three heterogenized visible-light PCs, RuL@InTATB, where L = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), or 2,2'-bipyrazine (bpz).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.
Solid-state electrolytes (SSEs) are being extensively researched as replacements for liquid electrolytes in future batteries. Despite significant advancements, there are still challenges in using SSEs, particularly in extreme conditions. This study presents a hydrated metal-organic ionic cocrystal (HMIC) solid-state ion conductor with a solvent-assisted ion transport mechanism suitable for extreme operating conditions.
View Article and Find Full Text PDFSmall
September 2025
Department State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China.
Metal-organic cage-based crystalline frameworks (MCFs) are distinguished for high porosity and diverse functionality, while their applications are constrained by degradation in wet environments. Inspired by the "fight fire with fire" method in traditional Chinese medicine, trace-water-induced synthesis of armors is proposed to stabilize MCFs. Water at ppm concentration is enriched on the hydrophilic surface of MCFs, and then polymerizes with diisocyanate under the catalysis of MCFs to form hydrophobic shells.
View Article and Find Full Text PDFLangmuir
September 2025
Chemical Engineering Program, Rayen School of Engineering, Youngstown State University, Youngstown, Ohio 44555, United States.
A novel hybrid nanocomposite based on a metal-organic framework (MOF) and electroconductive cellulose nanocrystals (CNCs) was developed for the individual and simultaneous detection of heavy metal ions Cd, Pb, Cu, and Hg. The reported modified electrode was based on a thin layer of the hybrid nanocomposite formed on a glassy carbon electrode via a drop-casting method. The MOF, DUT-67, provided binding sites for heavy metal ions due to putative interactions between organic linkers and metal cation analytes.
View Article and Find Full Text PDFJ Environ Manage
August 2025
Department of Environmental Science & Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea. Electronic address:
The efficient removal of cationic dyes from wastewater is crucial because of their environmental persistence and toxicity. This study investigates the adsorption behavior of methylene blue (MB) and crystal violet (CV) onto defective UiO-66 (dUiO-66), which is a metal-organic framework (MOF) with enhanced porosity and surface chemistry. The adsorption kinetics followed a pseudo-second-order model, indicating that the rate-limiting step is affected by the concentrations of both adsorbent and adsorbate.
View Article and Find Full Text PDF