98%
921
2 minutes
20
Objective: Although beta-amyloid (Aβ) positron emission tomography (PET) images are interpreted visually as positive or negative, approximately 10% are judged as equivocal in Alzheimer's disease. Therefore, we aimed to develop an automated semi-quantitative analysis technique using F-flutemetamol PET images without anatomical images.
Methods: Overall, 136 cases of patients administered F-flutemetamol were enrolled. Of 136 cases, five PET images each with the highest and lowest values of standardized uptake value ratio (SUVr) of cerebral cortex-to-pons were used to create positive and negative templates. Using these templates, PET images of the remaining 126 cases were standardized, and SUVr images were produced with the pons as a reference region. The mean of SUVr values in the volume of interest delineated on the cerebral cortex was compared to those in the CortexID Suite (GE Healthcare). Furthermore, centiloid (CL) values were calculated for the 126 cases using data from the Centiloid Project ( http://www.gaain.org/centiloid-project ) and both templates. F-flutemetamol-PET was interpreted visually as positive/negative based on Aβ deposition in the cortex. However, the criterion "equivocal" was added for cases with focal or mild Aβ accumulation that were difficult to categorize. Optimal cutoff values of SUVr and CL maximizing sensitivity and specificity for Aβ detection were determined by receiver operating characteristic (ROC) analysis using the visual evaluation as a standard of truth.
Results: SUVr calculated by our method and CortexID were highly correlated (R = 0.9657). The 126 PET images comprised 84 negative and 42 positive cases of Aβ deposition by visual evaluation, of which 11 and 10 were classified as equivocal, respectively. ROC analyses determined the optimal cutoff values, sensitivity, and specificity for SUVr as 0.544, 89.3%, and 92.9%, respectively, and for CL as 12.400, 94.0%, and 92.9%, respectively. Both semi-quantitative analyses showed that 12 and 9 of the 21 equivocal cases were negative and positive, respectively, under the optimal cutoff values.
Conclusions: This semi-quantitative analysis technique using F-flutemetamol-PET calculated SUVr and CL automatically without anatomical images. Moreover, it objectively and homogeneously interpreted positive or negative Aβ burden in the brain as a supplemental tool for the visual reading of equivocal cases in routine clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515054 | PMC |
http://dx.doi.org/10.1007/s12149-022-01769-x | DOI Listing |
JAMA Netw Open
September 2025
School of Medicine and Public Health, University of Wisconsin-Madison, Madison.
Importance: It is unclear whether the duration of amyloid-β (Aβ) pathology is associated with neurodegeneration and whether this depends on the presence of tau.
Objective: To examine the association of longitudinal atrophy with Aβ positron emission tomography (PET)-positivity (Aβ+) and the estimated duration of Aβ+ (Aβ+ duration), controlling for tau-positivity.
Design, Setting, And Participants: Data for this longitudinal cohort study were drawn from the Wisconsin Registry for Alzheimer Prevention and the Wisconsin Alzheimer Disease Research Center Clinical Core Study.
Eur J Nucl Med Mol Imaging
September 2025
Department of PET-CT/MRI, NHC Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.
Objective: CXCR4 and integrin αβ play important roles in tumor biology and are highly expressed in multiple types of tumors. This study aimed to synthesize, preclinically evaluate, and clinically validate a novel dual-targeted PET imaging probe Ga-pentixafor-c(RGDfK) for its potential in imaging tumors.
Methods: The effects of Ga-pentixafor-c(RGDfK) on cell viability, targeting specificity, and affinity were assessed in the U87MG cells.
Eur J Nucl Med Mol Imaging
September 2025
Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
Purpose: Cardiac noradrenergic denervation visualized by meta-[I]iodobenzylguanidine ([I]MIBG) imaging supports the diagnosis of Parkinson's disease (PD). Recently, meta-[F] fluorobenzylguanidine ([F]MFBG) PET demonstrated favorable imaging characteristics compared with [I]MIBG scintigraphy for neuroendocrine tumors. We assessed [F]MFBG dosimetry and myocardial pharmacokinetics in healthy controls and PD patients.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
September 2025
Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yang Pu District, Shanghai, 200433, China.
Purpose: In this retrospective study, whether [Ga]Ga-DOTA-FAPI-04 PET/MR imaging biomarkers can predict the progression-free survival (PFS) and overall survival (OS) of patients with advanced pancreatic cancer was investigated.
Methods: Fifty-one patients who underwent [Ga]Ga-DOTA-FAPI-04 PET/MR scans before first-line chemotherapy were recruited. Imaging biomarkers, including the maximum tumor diameter, minimum apparent diffusion coefficient (ADC), maximum and mean standardized uptake values (SUV and SUV), fibroblast activation protein- (FAP-) positive tumor volume (FTV and W-FTV) and total lesion FAP expression (TLF and W-TLF), were recorded for primary and whole-body tumors.
Mol Pharm
September 2025
Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
Myocardial fibrosis, a key pathological feature of hypertensive heart disease (HHD), remains diagnostically challenging due to limited clinical tools. In this study, a FAPI-targeted uptake mechanism previously reported by our group, originally developed for tumor imaging, is extended to the detection of myocardial fibrosis in HHD using [F]F-NOTA-FAPI-MB. The diagnostic performance of this tracer is compared with those of [F]F-FDG, [F]F-FAPI-42, and [F]F-NOTA-FAP2286, and its potential for fluorescence imaging is also evaluated.
View Article and Find Full Text PDF