98%
921
2 minutes
20
Limited number of projects have attempted to partition and quantify indoor- and outdoor-generated PM (PM and PM) where strong indoor sources (e.g., solid fuel, tobacco smoke, or kerosene) exist. This study aimed to apply and refine a previous recursive model used to derive infiltration efficiency (F) to additionally partition pollution concentrations into indoor and outdoor origins within residences challenged by elevated ambient and indoor combustion-related sources. During the winter of 2016 and summer of 2017 we collected residential measurements in 72 homes in urban and peri-urban Beijing, 12 of which had additional paired residential outdoor measurements during the summer season. Local ambient measurements were collected throughout. We then compared the calculated PM and using (i) outdoor and (ii) ambient measurements as model inputs. The results from outdoor and ambient measurements were not significantly different, which suggests that ambient measurements can be used as a model input for pollution origin partitioning when paired outdoor measurements are not available. From the results calculated using ambient measurements, the mean percentage contribution of indoor-generated PM was 19 % (σ = 22 %), and 7 % (11 %) of the total indoor PM for peri-urban and urban homes respectively during the winter; and 18 % (18 %) and 6 % (10 %) of the total indoor PM during the summer. Partitioning pollution into PM and PM is important to allow investigation of distinct associations between health outcomes and particulate mixes, often with different physiochemical composition and toxicity. It will also inform targeted interventions that impact indoor and outdoor sources of pollution (e.g., domestic fuel switching vs. power generation), which are typically radically different in design and implementation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.157249 | DOI Listing |
Biotechniques
September 2025
Woman, Mother + Baby Research Institute, Tufts Medicine, Boston, MA, USA.
MicroRNAs (miRNAs) are considered more stable than mRNA, but the impact of progressive thawing of biological samples after freezing as may happen during shipping delays has not been quantified. To address this, we utilized digital PCR to estimate the absolute concentrations of select miRNAs following progressive thawing of human plasma and maintenance at ambient temperature. Specifically, we quantified let-7b-3p, miR-144-5p, miR-150-5p, miR-517a-3p, miR-524-5p, and miR-1283, which have varying abundance in plasma.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China. Electronic address:
The aldehyde addition reaction is recognized as a key pathway in the formation of haloacetamides (HAMs) in drinking water. In particular, the reaction between monochloramine and chloroaldehydes has been reported to proceed rapidly. However, the measured concentrations of haloaldehydes (HALs) in chloraminated water are often much higher than those of HAMs.
View Article and Find Full Text PDFJ Chromatogr A
September 2025
Environment Research Institute, Shandong University, Qingdao, 266237, China. Electronic address:
On-site accurate and real-time monitoring of trace chemical warfare agents is a critical component of national security surveillance. In this study, a photoionization-induced chemical ionization time-of-flight mass spectrometry is developed for the detection of trace gaseous chemical warfare agents under ambient conditions. Firstly, a benzene-toluene-xylene mixture standard gas is utilized to optimize the instrument parameters, followed by screening of dopants for chemical warfare agents detection, with methanol ultimately identified as the optimal dopant.
View Article and Find Full Text PDFEnviron Res
September 2025
School of Public Health, Sun Yat-sen University, Guangzhou 510080, China. Electronic address:
Climate change has heightened awareness of the health impacts of non-optimal temperatures (cold and heat), including the effect of gestational exposure and birth outcomes. However, temperature exposure assessment remains methodologically challenging due to unaccounted individual spatiotemporal mobility and adaptive behaviors, a gap that has not been adequately addressed in published studies. Using data from a prospective birth cohort in Guangzhou, China, conducted from 2017 to 2020, we assessed and compared three different exposure measures: home-based exposure, derived solely from ambient temperature data at residential locations; mobility-based exposure, incorporating individuals' spatiotemporal activities to capture dynamic environmental conditions; and AC & mobility-based exposure, an extension of the mobility-based approach that further integrates data on air-conditioning usage.
View Article and Find Full Text PDFPlant Commun
September 2025
School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany. Electronic address:
The coordination of floral developmental stages with the environment is important for reproductive success and the optimization of crop yields. The timing of different developmental stages contributes to final yield potential with optimal adaptation enabling development to proceed without being impacted by seasonal weather events, including frosts or end of season drought. Here we characterise the role of FLOWERING LOCUS T 3 (FT3) in hexaploid bread wheat (Triticum aestivum) during the early stages of floral development.
View Article and Find Full Text PDF