98%
921
2 minutes
20
Given their versatility and formability, polymers have proven to be a viable platform facilitating a controlled and tuned release for a variety of therapeutic agents. One growing area of polymer drug delivery is polymeric prodrugs, which covalently link active pharmaceutical ingredients to a polymeric form to enhance stability, delivery, and pharmacology. One such class of polymeric prodrugs, poly(beta amino esters) (PβAEs) can be synthesized into crosslinked, or "thermoset," networks which greatly limits their processability. An antioxidant-PβAE polymer prodrug that is soluble in organic solutions would permit enhanced processability, increasing their utility and manufacturability. Curcumin PβAEs were synthesized to be soluble in organic solvents while retaining the release and activity properties. To demonstrate the polymer processability, curcumin PβAEs were further synthesized into nanoparticles and thin films. Control over nanoparticle size and film thickness was established through variance of dope solution concentration and withdrawal speed, respectively. Layering of polymeric films was demonstrated through inkjet printing of thin films. Polymer function was characterized through curcumin release and antioxidant activity. The processing of the polymer had a drastic impact on the curcumin release profiles indicating the polymer degradation was influenced by surface area and porosity of the final product. Previously, release was controlled primarily through the hydrophobicity of the polymer. Here, we demonstrate a novel method for further tuning the degradation by processing the polymer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.35123 | DOI Listing |
Adv Sci (Weinh)
September 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, State Key Laboratory of Advanced Materials for Intelligent Sensing, Tianjin University, Tianjin, 300072, China.
Organic electrode materials have garnered great attention in recent years, owing to their resource sustainability, structural diversity, and superior compatibility with various ionic species. Among them, quinone-based compounds have attracted particular interest. Notably, compared with para-quinone analogs (e.
View Article and Find Full Text PDFJ Cosmet Dermatol
September 2025
Laboratoires VIVACY, France.
Background: Superficial injection of hyaluronic acid (HA)-based gels is a widely used method to restore skin quality and achieve a more youthful appearance. While the clinical benefits of such procedures are well established, their biological mechanisms of action remain poorly understood.
Objective: This study aimed to evaluate the effectiveness of two cross-linked HA gels (IPN-12.
Chembiochem
September 2025
Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
Natural products exhibit a wide range of biological activities and are the crucial resources for drug development and compound modification. Cytochrome P450 enzymes (P450s, CYP) are a class of multifunctional and stereoselective biocatalysts that utilize heme as a cofactor and can be employed in the biosynthesis of natural products. With the development of biotechnology, P450s have been widely applied in the synthesis of natural products.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.
Hybrid systems (HSs) of quantum dots (QDs) and molecular photoswitches exhibit luminescence switching of QDs based on energy transfer and have garnered attention for their potential applications in sensors and optical memories. In HSs, the chemical composition, such as the number of attached ligands, is inherently distributed, posing challenges for extracting the energy transfer process from the QDs to a single acceptor molecule. The stochastic model, assuming a Poisson distribution for the number of acceptors, proves to be an effective approach for extracting the process.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemistry, IIT Kharagpur, Kharagpur, 721302, India.
The solid-solution alloys of Mn-Zn-Ga and Mn-Zn-Sn have been synthesized by a high-temperature method and structurally characterized by X-ray diffraction studies. The substitutional solid-solution alloys that crystallize in the chiral space group 432 or 432 adopt the A13-type structure (β-Mn). Similar to β-Mn, the 20 atoms in the cubic unit cell are distributed over 8 and 12 Wyckoff positions.
View Article and Find Full Text PDF