Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plant litter is the major source of energy and nutrients in stream ecosystems and its decomposition is vital for ecosystem nutrient cycling and functioning. Invertebrates are key contributors to instream litter decomposition, yet quantification of their effects and drivers at the global scale remains lacking. Here, we systematically synthesized data comprising 2707 observations from 141 studies of stream litter decomposition to assess the contribution and drivers of invertebrates to the decomposition process across the globe. We found that (1) the presence of invertebrates enhanced instream litter decomposition globally by an average of 74%; (2) initial litter quality and stream water physicochemical properties were equal drivers of invertebrate effects on litter decomposition, while invertebrate effects on litter decomposition were not affected by climatic region, mesh size of coarse-mesh bags or mycorrhizal association of plants providing leaf litter; and (3) the contribution of invertebrates to litter decomposition was greatest during the early stages of litter mass loss (0-20%). Our results, besides quantitatively synthesizing the global pattern of invertebrate contribution to instream litter decomposition, highlight the most significant effects of invertebrates on litter decomposition at early rather than middle or late decomposition stages, providing support for the inclusion of invertebrates in global dynamic models of litter decomposition in streams to explore mechanisms and impacts of terrestrial, aquatic, and atmospheric carbon fluxes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/brv.12880DOI Listing

Publication Analysis

Top Keywords

litter decomposition
40
instream litter
16
litter
15
decomposition
13
invertebrate effects
12
litter quality
8
quality stream
8
physicochemical properties
8
effects litter
8
invertebrates litter
8

Similar Publications

Beech leaf disease (BLD) poses a serious threat to the health of beech forests throughout the northeastern USA and Canada. Caused by invasive nematodes, BLD first appeared in 2012 in Ohio and has rapidly spread eastward. We investigated the effects of BLD on leaf and litter chemistry and leaf litter decomposition rate from four infected beech stands in Falmouth, Massachusetts.

View Article and Find Full Text PDF

Introduction: Peatlands store up to a third of global soil carbon, and in high latitudes their litter inputs are increasing and changing in composition under climate change. Although litter significantly influences peatland carbon and nutrient dynamics by changing the overall lability of peatland organic matter, the physicochemical mechanisms of this impact-and thus its full scope-remain poorly understood.

Methods: We applied multimodal metabolomics (UPLC-HRMS, H NMR) paired with C Stable Isotope-Assisted Metabolomics (SIAM) to track litter carbon and its potential priming effects on both existing soil organic matter and carbon gas emissions.

View Article and Find Full Text PDF

Grazing system and body weight of Tibetan sheep influence biomass allocation and decomposition in alpine meadows.

J Environ Manage

September 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China,

Grazing affects the allocation of aboveground biomass (AGB), and decomposition of litter and dung, thereby regulating material flow in grassland ecosystems. However, the combined effects of grazing system (GS) and body weight (BW) on biomass allocation remain unclear. This study had conducted a two-year experiment in an alpine meadow of Qinghai-Tibetan Plateau (QTP), in order to examine the effects of two GS (continuous grazing - CG, and rotational grazing - RG) and three BWs of Tibetan sheep (23.

View Article and Find Full Text PDF

Senesced bark litter of collected from pure plantation was placed in four stand types, including pure plantation (control), - mixed plantation (-), - mixed plantation (-), and -- mixed plantation (--). During a 540-day decomposition period, litterbags were retrieved every 60 days to measure remaining dry mass and the contents of carbon (C), nitrogen (N), phosphorus (P), cellulose, and lignin. We analyzed decomposition characteristics, home-field advantage (HFA), nutrient release, and key drivers in mixed plantations.

View Article and Find Full Text PDF

Effects of antidepressant exposures on a stream detrital food chain: Microbial decomposers and invertebrate detritivores.

Ecotoxicol Environ Saf

August 2025

Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, China.

Antidepressants are often found in freshwater ecosystems, yet their potential impacts on ecological processes and species interactions remain poorly understood. This study assessed the ecological influence of fluoxetine and amitriptyline at environmentally realistic levels (1-100 ng L) on a detritus-based food chain that encompasses microbial decomposers and freshwater snails. In the experiment, we monitored the responses of microbial decomposers (biomass and enzyme activity), and Cipangopaludina cathayensis (consumption rates and antioxidant capacity), as well as leaf litter traits (decomposition rate and nutrient content).

View Article and Find Full Text PDF