Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chemokine receptors represent novel targets for treatment of multiple myeloma (MM). However, CXCR4 expression appears to be highly dynamic. This study investigated the impact of commonly used anti-myeloma agents on CXCR4 expression. Established human myeloma cell lines as well as patient-derived CD138 plasma cells were exposed to antineoplastic drugs. Cells were analyzed for CXCR4 expression by flow cytometry and stochastic optical reconstruction microscopy (STORM). In addition, cellular uptake of Ga-Pentixafor, a PET radiotracer for noninvasive assessment of CXCR4 expression , was assessed. CXCR4 expression was highly variable and turned out to be substance, dose and time dependent. Treatment with bortezomib was associated with reduced expression, while dexamethasone and doxorubicin significantly increased expression of CXCR4. Combination of these compounds further increased CXCR4 expression. In conclusion, drugs or combination of drugs can induce CXCR4 expression in myeloma cells. Hence, pretreatment may impact on response to CXCR4-based therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10428194.2022.2074986DOI Listing

Publication Analysis

Top Keywords

cxcr4 expression
32
cxcr4
9
expression
9
multiple myeloma
8
expression multiple
4
myeloma
4
myeloma dynamic
4
dynamic process
4
process influence
4
influence therapeutic
4

Similar Publications

Network Pharmacology of miR-146a-5p as a Potential Anti-Inflammatory Agent in Preventing Alzheimer's Disease.

Curr Alzheimer Res

September 2025

School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia.

Introduction: Alzheimer's disease is expressed as chronic neuroinflammation in the brain, which results in neuronal dysfunction, aberrant protein folding, and declining cognitive abilities. miR-146a-5p is a potent anti-inflammatory agent that can be used to treat several inflammatory diseases, as well as promote wound healing. Our research aimed to utilize network pharmacology to elucidate the therapeutic potential of miR-146a-5p in treating Alzheimer's disease using a biocomputational approach.

View Article and Find Full Text PDF

Osteosarcoma (OS), the most prevalent primary bone malignancy in adolescents, is characterized by aggressive progression and early metastasis. However, the epigenetic drivers of its metastatic heterogeneity remain poorly understood. Herein, we integrated bulk DNA methylation profiling and single-cell RNA sequencing (scRNA-seq) to elucidate the epigenetic mechanisms driving OS metastatic heterogeneity.

View Article and Find Full Text PDF

Background: The cellular composition and molecular mechanisms of the pathological arteries in Moyamoya disease (MMD) remain poorly understood. To improve our understanding of pathogenesis in MMD, we aimed to comprehensively map the cellular composition and molecular alterations within the pathological arteries of patients with MMD.

Methods: Superficial temporal artery samples were collected from patients with MMD (n=2) and healthy controls (n=3), yielding a total of 26 371 cells that were used for single-cell RNA sequencing.

View Article and Find Full Text PDF

Targeting TRPV6/CXCR4 complexes prevents castration-resistant prostate cancer metastasis to the bone.

Signal Transduct Target Ther

September 2025

Laboratory of Cell Physiology, INSERM U1003, Laboratory of Excellence Ion Channels Science and Therapeutics, Equipe Labellisée par la Ligue Nationale Contre le Cancer. Department of Biology, Faculty of Science and Technologies, University of Lille, Villeneuve d'Ascq, France. vyacheslav.lehenkyi@uni

Bone metastasis most commonly occurs in castration-resistant prostate cancer (CRPC). The TRPV6 calcium channel is absent in healthy prostate tissue, but its expression increases considerably during cancer progression. We hypothesized that cancer cells induce TRPV6 expression de novo to directly benefit from tightly regulated calcium intake via TRPV6 while providing cancer cells with a selective advantage for metastasis in the calcium-abundant niche, such as bone.

View Article and Find Full Text PDF

Background: Diabetic vascular complications present significant clinical challenges, including limited treatment efficacy, high postoperative restenosis rates, and delayed early diagnosis. This study investigates CXCR4-modified adipose-derived mesenchymal stem cells (AMSCs/CXCR4) in regulating pathological endothelial proliferation under hyperglycemic conditions.

Aims: The purpose is to provide new mechanism insights and potential therapeutic targets for early intervention of diabetes-related vascular diseases.

View Article and Find Full Text PDF