98%
921
2 minutes
20
The brain functional connectome, the collection of interconnected neural circuits along functional networks, facilitates a cutting-edge understanding of brain functioning, and has a potential to play a mediating role within the effect pathway between an exposure and an outcome. While existing mediation analytic approaches are capable of providing insight into complex processes, they mainly focus on a univariate mediator or mediator vector, without considering network-variate mediators. To fill the methodological gap and accomplish this exciting and urgent application, in the article, we propose an integrative mediation analysis under a Bayesian paradigm with networks entailing the mediation effect. To parameterize the network measurements, we introduce individually specified stochastic block models with unknown block allocation, and naturally bridge effect elements through the latent network mediators induced by the connectivity weights across network modules. To enable the identification of truly active mediating components, we simultaneously impose a feature selection across network mediators. We show the superiority of our model in estimating different effect components and selecting active mediating network structures. As a practical illustration of this approach's application to network neuroscience, we characterize the relationship between a therapeutic intervention and opioid abstinence as mediated by brain functional sub-networks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10131252 | PMC |
http://dx.doi.org/10.1002/sim.9488 | DOI Listing |
Comput Biol Med
September 2025
Laboratorio de Procesado de Imagen (LPI), ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain. Electronic address:
Modelling the diffusion-relaxation magnetic resonance (MR) signal obtained from multi-parametric sequences has recently gained immense interest in the community due to new techniques significantly reducing data acquisition time. A preferred approach for examining the diffusion-relaxation MR data is to follow the continuum modelling principle that employs kernels to represent the tissue features, such as the relaxations or diffusion properties. However, constructing reasonable dictionaries with predefined signal components depends on the sampling density of model parameter space, thus leading to a geometrical increase in the number of atoms per extra tissue parameter considered in the model.
View Article and Find Full Text PDFBrain Dev
September 2025
Jinnah Sindh Medical University, Karachi, Pakistan.
Clin Neurol Neurosurg
September 2025
Neurovascular Research Unit, Department of Neurology, Copenhagen, University Hospital - Herlev and Gentofte, Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; Department of Brain, and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet,
Objective: Severity and outcome of stroke may be associated with a concomitant or subsequent inflammatory response. C-reactive protein (CRP) may correlate with length of stay (LOS) in hospital, indicating increased complexity of stroke patients with an ongoing inflammatory reaction upon admission.
Methods: This retrospective cross-sectional study used data from admissions to the non-comprehensive Stroke Unit, which receives patients ineligible for revascularization therapy at Herlev-Gentofte hospital, in 2019 and 2020.
J Physiol
September 2025
Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, USA.
Cognitive decline and physical impairment are often linked with ageing, contributing to declines in health span and loss of independence in older adults. Pathological cognitive decline with age is largely considered to be a brain-centric challenge. However, recent findings have begun to challenge this paradigm as the health of peripheral systems, namely skeletal muscle, predict cognitive decline associated with Alzheimer's disease (AD).
View Article and Find Full Text PDFCell Rep
September 2025
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern M
Myelination is essential for normal brain function, yet the mechanisms governing neuron-oligodendrocyte interactions that ensure proper myelination levels remain poorly understood. Here, we identify transcription factor EB (TFEB) as a molecular link that connects extrinsic neuronal cues to intrinsic oligodendrocyte transcriptional programs, regulating central nervous system myelination. Using a TFEB epitope-tagged knock-in mouse model, we find that neurons sequester most of the TFEB protein in the cytoplasm of myelinating oligodendrocytes.
View Article and Find Full Text PDF