98%
921
2 minutes
20
In today's digital era, many applications generate massive data streams that must be sequenced and processed immediately. Therefore, storing large amounts of data for analysis is impractical. Now, this infinite amount of evolving data confronts concept drifts in data stream classification. Concept drift is a phenomenon in which the distribution of input data or the relationship between input data and target label changes over time. If the drifts are not addressed, the learning model's performance suffers. Non-stationary data streams must be processed as they arrive, and neural networks' built-in capabilities aid in the processing of huge non-stationary data streams. We proposed an adaptive windowing approach based on a gated recurrent unit, a variant of the recurrent neural network incrementally trained on incoming data (for the real-world airline and synthetic Streaming Ensemble Algorithm (SEA) datasets), and employed elastic weight consolidation with the Fisher information matrix to prevent forgetting. Unlike the traditional fixed window methodology, the proposed model dynamically increases the window size if the prediction is correct and reduces it if drifts occur. As a result, an adaptive recurrent neural network model can adapt to changes in the non-stationary data stream and provide consistent performance. Moreover, the findings revealed that on the airline and the SEA dataset, the proposed model outperforms state-of-the-art methods by achieving 67.74% and 91.70% accuracy, respectively. Further, the results demonstrated that the proposed model has a better accuracy of 3.6% and 1.6% for the SEA and the airline dataset, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9243804 | PMC |
http://dx.doi.org/10.1007/s12652-022-04116-0 | DOI Listing |
Front Genet
August 2025
Hunan Provincial Key Laboratory of Finance and Economics Big Data Science and Technology, Hunan University of Finance and Economics, Changsha, China.
RNA N4-acetylcytidine (ac4C) is a crucial chemical modification involved in various biological processes, influencing RNA properties and functions. Accurate prediction of RNA ac4C sites is essential for understanding the roles of RNA molecules in gene expression and cellular regulation. While existing methods have made progress in ac4C site prediction, they still struggle with limited accuracy and generalization.
View Article and Find Full Text PDFVet World
July 2025
Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand.
Background And Aim: Granulosa cells (GCs) are crucial mediators of follicular development and oocyte competence in goats, with their gene expression profiles serving as potential biomarkers of fertility. However, the lack of a standardized, quantifiable method to assess GC quality using transcriptomic data has limited the translation of such findings into reproductive applications. This study aimed to develop a hybrid deep learning model integrating one-dimensional convolutional neural networks (1DCNNs) and gated recurrent units (GRUs) to classify GCs as fertility-supporting (FS) or non-fertility-supporting (NFS) using single-cell RNA sequencing (scRNA-seq) data.
View Article and Find Full Text PDFFront Neural Circuits
September 2025
Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan.
Neuronal networks in animal brains are considered to realize specific filter functions through the precise configuration of synaptic weights, which are autonomously regulated without external supervision. In this study, we employ a single Hodgkin-Huxley-type neuron with autapses as a minimum model to computationally investigate how spike-timing-dependent plasticity (STDP) adjusts synaptic weights through recurrent feedback. The results show that the weights undergo oscillatory potentiation or depression with respect to autaptic delay and high-frequency stimulation.
View Article and Find Full Text PDFJ Neurosci
September 2025
Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
Layer 6 corticothalamic (L6CT) neurons project to both cortex and thalamus, inducing multiple effects including the modulation of cortical and thalamic firing, and the emergence of high gamma oscillations in the cortical local field potential (LFP). We hypothesize that the high gamma oscillations driven by L6CT neuron activation reflect the dynamic engagement of intracortical and cortico-thalamo-cortical circuits. To test this, we optogenetically activated L6CT neurons in NTSR1-cre mice (both male and female) expressing channelrhodopsin-2 in L6CT neurons.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Perineural invasion (PNI) is a common pathological characteristic of pancreatic ductal adenocarcinoma (PDAC), closely linked to postoperative recurrence, metastasis, and unfavorable prognosis. Nevertheless, the precise mechanisms that govern PNI in PDAC remain poorly elucidated. Here, group-specific component protein (GC) is identified as one of the most significantly upregulated genes related to PNI, primarily derived from malignant ductal cells compared to other cell types.
View Article and Find Full Text PDF