Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aerosol emissions from wind instruments are a suspected route of transmission for airborne infectious diseases, such as SARS-CoV-2. We evaluated aerosol number emissions (from 0.25 to 35.15 μm) from 81 volunteer performers of both sexes and varied age (12 to 63 years) while playing wind instruments (bassoon, clarinet, flute, French horn, oboe, piccolo, saxophone, trombone, trumpet, and tuba) or singing. Measured emissions spanned more than two orders of magnitude, ranging in rate from < 8 to 1,815 particles s, with brass instruments, on average, producing 191% (95% CI 81-367%) more aerosol than woodwinds. Being male was associated with a 70% increase in emissions (vs. female; 95% CI 9-166%). Each 1 dBA increase in sound pressure level was associated with a 28% increase (95% CI 10-40%) in emissions from brass instruments; sound pressure level was not associated with woodwind emissions. Age was not a significant predictor of emissions. The use of bell covers reduced aerosol emissions from three brass instruments tested (trombone, tuba, and trumpet), with average reductions ranging from 53 to 73%, but not for the two woodwind instruments tested (oboe and clarinet). Results from this work can facilitate infectious disease risk management for the performing arts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252563PMC
http://dx.doi.org/10.1038/s41598-022-15530-xDOI Listing

Publication Analysis

Top Keywords

wind instruments
12
aerosol emissions
8
emissions wind
8
instruments effects
4
effects performer
4
performer age
4
age sex
4
sex sound
4
sound pressure
4
pressure level
4

Similar Publications

The Integrated Mass Enhancement (IME) method is among the most popular remote sensing method for estimating methane emissions from point sources, and it has gained significant popularity in recent years. In this study, we evaluated how key environmental and observational factors, namely wind speed, instrument noise, terrain topography, and the source of 10-meter wind speed (U) data, influence emission estimates derived from the IME method. Although landfills are typically area sources, we used a simplified point-source emission setup as a controlled case to systematically explore the sensitivity of IME to each of these factors.

View Article and Find Full Text PDF

Flying vertebrates use specialized wingbeat kinematics in hovering, takeoff, and landing, featuring ventrally anterior downstrokes and aerodynamically inactive upstrokes to enhance aerodynamic characteristics at low airspeeds. Rarely implemented in robotics, this inspired RoboFalcon2.0, a flapping-wing robot with reconfigurable mechanisms performing bioinspired flap-sweep-fold (FSF) motion for controlled bird-style takeoff.

View Article and Find Full Text PDF

This study investigated the effects of air resistance and drafting on oxygen uptake, ground reaction forces, and lower body kinematics during treadmill running. Thirty-three trained distance runners ran at 3.35 to 4.

View Article and Find Full Text PDF

An explosion of recent research uses remote imaging spectroscopy from aircraft and spacecraft to detect and quantify methane point source emissions. These instruments first map the methane enhancement field and then combine this information with the effective wind speed to estimate the source emission rate. This wind speed is typically the largest uncertainty in derived emission rates.

View Article and Find Full Text PDF

Atmospheric NO remains one of the primary pollutant gases in urban areas. However, current techniques such as ground-based measurements, remote sensing, and atmospheric chemistry models have persistently faced challenges in monitoring sub-daily NO concentrations at high spatial resolution. Mobile phone signaling data holds significant potential for characterizing human activity intensity, offering new opportunities to track near-surface NO concentrations with refined spatiotemporal precision.

View Article and Find Full Text PDF