Targeting NAAA counters dopamine neuron loss and symptom progression in mouse models of parkinsonism.

Pharmacol Res

Department of Anatomy and Neurobiology University of California Irvine, 92697-1275 CA, USA; Department of Pharmaceutical Sciences, University of California Irvine, 92697-1275 CA, USA; Department of Biological Chemistry, University of California Irvine, 92697-1275 CA, USA. Electronic address: piomell

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The lysosomal cysteine hydrolase N-acylethanolamine acid amidase (NAAA) deactivates palmitoylethanolamide (PEA), a lipid-derived PPAR-α agonist that is critically involved in the control of pain and inflammation. In this study, we asked whether NAAA-regulated PEA signaling might contribute to dopamine neuron degeneration and parkinsonism induced by the mitochondrial neurotoxins, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In vitro experiments showed that 6-OHDA and MPTP enhanced NAAA expression and lowered PEA content in human SH-SY5Y cells. A similar effect was observed in mouse midbrain dopamine neurons following intra-striatal 6-OHDA injection. Importantly, deletion of the Naaa gene or pharmacological inhibition of NAAA activity substantially attenuated both dopamine neuron death and parkinsonian symptoms in mice treated with 6-OHDA or MPTP. Moreover, NAAA expression was elevated in postmortem brain cortex and premortem blood-derived exosomes from persons with Parkinson's disease compared to age-matched controls. The results identify NAAA-regulated PEA signaling as a molecular control point for dopaminergic neuron survival and a potential target for neuroprotective intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9733952PMC
http://dx.doi.org/10.1016/j.phrs.2022.106338DOI Listing

Publication Analysis

Top Keywords

dopamine neuron
12
naaa-regulated pea
8
pea signaling
8
6-ohda mptp
8
naaa expression
8
naaa
5
targeting naaa
4
naaa counters
4
dopamine
4
counters dopamine
4

Similar Publications

Modeling neurodegeneration and neuroinflammation in Parkinson's Disease: Animal-based strategies.

Methods Cell Biol

September 2025

Histology and Cell Biology Department, School of Medicine, Complutense University of Madrid, Madrid, Spain. Electronic address:

Parkinson disease (PD) is the second most prevalent neurodegenerative disorder globally, trailing only Alzheimer´s disease. It currently affects nearly 3 % of individuals aged 65 and above. The disease is characterized by the progressive loss of dopaminergic neurons accompanied by a chronic neuroinflammatory process, which is responsible for both motor symptoms (tremor, rigidity, bradykinesia) and non-motor symptoms (depression, dysphagia, anxiety, constipation, and anosmia).

View Article and Find Full Text PDF

Tubulin hyperacetylation drives HMGB1 nuclear exit via the ROS-PARP1 axis leading to rotenone-induced G2/M Arrest.

J Biol Chem

September 2025

Institute of Health Sciences, Presidency University, Canal Bank Rd, DG Block, Action Area 1D, New Town, Kolkata-700156, West Bengal, India, Tel: +91 8017086495. Electronic address:

Rotenone, a lipophilic pesticide, is strongly linked to dopaminergic neuronal loss primarily through mitochondrial complex I inhibition. Beyond its well-characterized neurotoxic effects, rotenone also triggers G2/M arrest in cells, but the molecular mechanisms linking this cell cycle perturbation to neurodegeneration remain unclear. Here, we identify HMGB1 as a key player in this process.

View Article and Find Full Text PDF

Introduction: Parkinson's disease (PD) is a neurodegenerative disorder lacking therapies to replace lost dopaminergic neurons. Neural stem cell (NSC) transplantation faces survival and differentiation challenges. This study investigated feasibility and efficacy of paeoniflorin (PF) combined with NSC transplantation for PD treatment.

View Article and Find Full Text PDF

Dopaminergic neurons in the dorsal raphe nucleus may modulate social dominance in mice.

Zool Res

September 2025

Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science, Nanyang Normal University, Nanyang, Henan 473061, China.

Social hierarchies are central to the organizational structure of group-living species, shaping individual physiology, behavior, and social interactions. Dopaminergic (DA) systems, particularly within the ventral tegmental area (VTA) and dorsal raphe nucleus (DR), have been linked to motivation and competitive behaviors, yet their region-specific contributions to social dominance remain insufficiently defined. This study investigated the role of VTA and DR DA neurons in regulating social dominance in sexually naïve male C57BL/6J mice.

View Article and Find Full Text PDF

Nr4a2 (Nurr1) is well known to be vital for midbrain dopaminergic neurons. Recent single-cell RNA analyses reveal that Nr4a2 is expressed in lateral cerebral regions, within neurons named L4/L5/L6 IT Car3. These neurons have attracted intense attention for the molecular mechanisms underlying their development and functions.

View Article and Find Full Text PDF