Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Skeletal muscle fiber type distribution has implications for human health, muscle function, and performance. This knowledge has been gathered using labor-intensive and costly methodology that limited these studies. Here, we present a method based on muscle tissue RNA sequencing data (totRNAseq) to estimate the distribution of skeletal muscle fiber types from frozen human samples, allowing for a larger number of individuals to be tested.

Methods: By using single-nuclei RNA sequencing (snRNAseq) data as a reference, cluster expression signatures were produced by averaging gene expression of cluster gene markers and then applying these to totRNAseq data and inferring muscle fiber nuclei type via linear matrix decomposition. This estimate was then compared with fiber type distribution measured by ATPase staining or myosin heavy chain protein isoform distribution of 62 muscle samples in two independent cohorts (n = 39 and 22).

Results: The correlation between the sequencing-based method and the other two were r = 0.44 [0.13-0.67], [95% CI], and r = 0.83 [0.61-0.93], with p = 5.70 × 10 and 2.00 × 10, respectively. The deconvolution inference of fiber type composition was accurate even for very low totRNAseq sequencing depths, i.e., down to an average of ~ 10,000 paired-end reads.

Conclusions: This new method ( https://github.com/OlaHanssonLab/PredictFiberType ) consequently allows for measurement of fiber type distribution of a larger number of samples using totRNAseq in a cost and labor-efficient way. It is now feasible to study the association between fiber type distribution and e.g. health outcomes in large well-powered studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9250227PMC
http://dx.doi.org/10.1186/s13395-022-00299-4DOI Listing

Publication Analysis

Top Keywords

fiber type
20
muscle fiber
16
type distribution
16
rna sequencing
12
fiber
8
sequencing data
8
skeletal muscle
8
larger number
8
muscle
6
type
6

Similar Publications

This experiment evaluated the effects of replacing one-third of corn grain in a finishing diet with rye grain (RG) processed using one of three processing methods. Predominately Angus steers (n = 192, initial shrunk BW = 410 ± 20.9 kg) were blocked by source and pen location and assigned to one of four dietary treatments: dry-rolled corn (DRC), unprocessed RG (UNP), dry-rolled RG (DRR) and hammer-milled RG (HMR).

View Article and Find Full Text PDF

High-fat (HF) diets contribute to obesity, insulin resistance, fatty liver, gut microbiota dysbiosis, oxidative stress, and low-grade chronic inflammation. This study evaluated the preventive effects of dietary Type 2 resistant starch (RS2) from high-amylose maize and low-dose d-fagomine (FG) from buckwheat on these metabolic disturbances. Male Wistar-Kyoto rats (9-10 weeks old) were assigned to four diet groups for 10 weeks: standard (STD) diet, HF diet (45% kcal from fat), HF + RS diet (15% RS2), and HF + FG diet (0.

View Article and Find Full Text PDF

Electrical pulse stimulation (EPS) represents a useful tool to study exercise-related adaptations of muscle cells in vitro. Here, we examine the metabolic and secretory response of primary human muscle cells from metabolically healthy individuals to the EPS protocol reflecting the episodic nature of real-life exercise training. This intermittent EPS protocol alternates high-frequency stimulation periods with low-frequency resting periods.

View Article and Find Full Text PDF

The fiber of persistent homology for trees.

J Appl Comput Topol

September 2025

Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG UK.

Consider the space of continuous functions on a geometric tree  whose persistent homology gives rise to a finite generic barcode . We show that there are exactly as many path connected components in this space as there are merge trees whose barcode is . We find that each component is homotopy equivalent to a configuration space on  with specialised constraints encoded by the merge tree.

View Article and Find Full Text PDF

Achieving high capacitance while maintaining rapid charge transport and structural stability remains a major challenge in the design of battery-type supercapacitor electrodes. Herein, a molecularly engineered strategy is presented for constructing hierarchical hybrid electrodes by integrating petal-like NiCu-LDH nanosheets onto 3D HBC-x (x = H, F, OMe)-functionalized CNT paper via a one-step hydrothermal process. The incorporation of HBC effectively mitigates CNT agglomeration and constructs an interconnected conductive framework that enhances charge transport, shortens ion diffusion paths, and reduces internal resistance.

View Article and Find Full Text PDF