98%
921
2 minutes
20
Replacement of primary old-growth forests by secondary woodlands in threatened subtropical biomes drives important changes at the level of the overstory, understory and forest floor, but the impact on belowground microbial biodiversity is yet poorly documented. In the present study, we surveyed by metabarcoding sequencing, the diversity and composition of soil bacteria and fungi in the old-growth forest, dominated by stone oaks ( spp.) and in the secondary Yunnan pine woodland of an iconic site for biodiversity research, the Ailaoshan National Nature Reserve (Ailao Mountains, Yunnan province, China). We assessed the effect of forest replacement and other environmental factors, including soil horizons, soil physicochemical characteristics and seasonality (monsoon vs. dry seasons). We showed that tree composition and variation in soil properties were major drivers for both bacterial and fungal communities, with a significant influence from seasonality. Ectomycorrhizal Operational Taxonomic Units (OTUs) dominated the functional fungal guilds. Species richness and diversity of the bacterial and fungal communities were higher in the pine woodland compared to the primary forest, although prominent OTUs were different. The slightly lower complexity of the microbiome in the primary forest stands likely resulted from environmental filtering under relatively stable conditions over centuries, when compared to the secondary pine woodlands. In the old-growth forest, we found a higher number of species, but that communities were homogeneously distributed, whereas in the pine woodlands, there is a slightly lower number of species present but the communities are heterogeneously distributed. The present surveys of the bacterial and fungal diversity will serve as references in future studies aiming to assess the impact of the climate change on soil microbial diversity in both old-growth forests and secondary woodlands in Ailaoshan.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9234548 | PMC |
http://dx.doi.org/10.3389/fmicb.2022.908257 | DOI Listing |
Front Microbiol
August 2025
Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom.
Tropical rainforests support critical biogeochemical cycles regulated by complex plant-soil microbial interactions but are threatened by global change. Much of the uniquely biodiverse and carbon rich forest on Borneo has been lost through extensive conversion to monoculture plantation, and a significant proportion of the remaining forest has been heavily modified by selective logging. Ecological restoration of tropical forest aims to return forests to a near pristine state, but restoration initiatives are hindered by limited understanding of the underpinning plant-soil feedbacks, and impacts on soil microbial communities are unresolved.
View Article and Find Full Text PDFThe Siberian flying squirrel () represents the only European Pteromyini species. Thus, it is biogeographically unique due to its specialised anatomy and biology as a volant rodent. As a result of habitat fragmentation and destruction, Siberian flying squirrels experience severe and ongoing population declines throughout most of their distribution.
View Article and Find Full Text PDFForested, freshwater tidal wetlands in the southeastern US are dominated by bald cypresses (), which tolerate low levels of salinity. However, the response of old-growth bald cypress trees to prolonged increases in salinity remains uncertain. Bald cypress ghost forests occur along Smith Creek, a tributary of the Cape Fear River, North Carolina which has been dredged multiple times since 1871.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
July 2025
Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China.
The analysis of carbon dynamics in old-growth forests helps us understand forest conservation, restoration, and regional carbon sequestration. There is still controversy over whether old-growth forests are carbon sources or sinks. Studying the carbon storage and dynamics of old-growth forests is of great significance for evaluating their carbon source and sink functions, as well as quantifying forest carbon fixation at the regional scale.
View Article and Find Full Text PDFmBio
August 2025
State Key Laboratory for Vegetation Structure, Function and Construction, Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Enviro
The influence of climate warming on soil microbes and the mechanisms underlying these effects have become the subject of intense focus in microbial ecology and climate change research. However, it is largely unknown how warming affects soil microfauna network complexity and stability or how warming-induced changes may affect ecosystem functioning in old-growth forests. Here, we conducted a 3-year multilevel warming experiment in an old-growth subtropical forest using infrared heating with five treatments: ambient soil temperature and 0.
View Article and Find Full Text PDF