Theory-Driven Design of a Cationic Accelerator for High-Performance Electrolytic MnO -Zn Batteries.

Adv Mater

Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China.

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aqueous electrolytic MnO -Zn batteries are considered as one of the most promising energy-storage devices for their cost effectiveness, high output voltage, and safety, but their electrochemical performance is limited by the sluggish kinetics of cathodic MnO /Mn and anodic Zn/Zn reactions. To overcome this critical challenge, herein, a cationic accelerator (CA) strategy is proposed based on the prediction of first-principles calculations. Poly(vinylpyrrolidone) is utilized as a model to testify the rational design of the CA strategy. It manifests that the CA effectively facilitates rapid cations migration in electrolyte and adequate charge transfer at electrode-electrolyte interface, benefiting the deposition/dissolution processes of both Mn and Zn cations to simultaneously improve kinetics of cathodic MnO /Mn and anodic Zn/Zn reactions. The resulting MnO -Zn battery regulated by CA exhibits large reversible capacities of 455 mAh g and 3.64 mAh cm at 20 C, as well as a long lifespan of 2000 cycles with energy density retention of 90%, achieving one of the best overall performances in the electrolytic MnO -Zn batteries. This comprehensive work integrating theoretical prediction with experimental studies provides opportunities to the development of high-performance energy-storage devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202203249DOI Listing

Publication Analysis

Top Keywords

mno -zn
16
electrolytic mno
12
-zn batteries
12
cationic accelerator
8
energy-storage devices
8
kinetics cathodic
8
cathodic mno
8
mno /mn
8
/mn anodic
8
anodic zn/zn
8

Similar Publications

Harnessing anion-driven interfacial chemistry to suppress water reactivity for stable Zn metal anodes.

Chem Commun (Camb)

September 2025

Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China.

In this study, we unveil a critical function of anions in tailoring the interfacial water coordination environment and electronic structure at the Zn-electrolyte interface. These features thermodynamically hinder water-induced parasitic reactions, enabling highly reversible Zn plating/stripping. And the optimal electrolyte supports high-mass-loading applications in Zn-MnO batteries.

View Article and Find Full Text PDF

Controlled synthesis of Zn-doped MnO nanoplates for MRI-guided metal ion interference synergistic therapy for breast cancer.

J Colloid Interface Sci

August 2025

Public experimental research center of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; The school of pharmacy of Xuzhou Medical University, Xuzhou, Jiangsu 221004, China. Electronic address:

Manganese dioxide (MnO) nanomaterials have emerged as a promising class of nanoplatform for the therapeutic management of tumors due to their regulable physicochemical properties and good biocompatibility. However, the rational design of MnO nanomaterials often decreased the therapeutic efficacy of tumors due to the inherent protective mechanisms of eliminating the imbalance of Mn in cells. Herein, we firstly prepared a novel Zn ion doped MnO nanoplate (Zn-MnO) employing different zeolitic imidazolate framework 8 (ZIF8) precursors as Zn ion source, which possessed enhanced T1-weighted magnetic resonance imaging (MRI) signal, reactive oxygen species (ROS) generation capacity and efficient photothermal conversion.

View Article and Find Full Text PDF

The mechanical degradation of cathodes during charge-discharge cycling poses a critical limitation to the cycle life of aqueous zinc-ion batteries (AZIBs). Although the degradation of MnO cathodes has been extensively investigated, the underlying reaction mechanisms have long remained a subject of debate, and the associated mechanical evolution during cycling is still poorly understood. In this work, a comprehensive investigation of electrochemical phase transitions and chemical strain evolution in δ-MnO cathode is presented using a custom-built in situ strain testing system based on digital image correlation.

View Article and Find Full Text PDF

In Situ Construction of a Dual-Component Hybrid Interfacial Layer for Stabilizing Zinc Anodes in Aqueous Zn-Ion Batteries.

Small

August 2025

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.

Interfacial instability, particularly uncontrollable zinc deposition and water induced side reactions, severely compromises the cycling stability and lifespan of aqueous zinc-ion batteries (AZIBs), thereby hindering their commercialization. Herein, an in situ grown bilayer gradient hydrophobic artificial interface (ZFPB) is designed to achieve dendrite-free zinc deposition. In detail, the ion-conductive but electronically insulating ZnF outer layer facilitates the rapid migration of Zn.

View Article and Find Full Text PDF

Isoquinoline as an Electrolyte Additive for Electrolytic Zn-MnO Batteries: Superior Cycling Stability and Areal Capacity.

Adv Mater

August 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.

Aqueous electrolytic Zn-MnO batteries hold great promise for energy storage applications owing to their high theoretical electromotive force and energy density. However, the zinc anode suffers from severe corrosion in strongly acidic electrolytes, leading to hydrogen evolution, low zinc utilization, and premature battery failure. To address these challenges, isoquinoline is introduced as an additive in a chloride-based acidic electrolyte.

View Article and Find Full Text PDF