Rinsing postprocessing procedure of a 3D-printed orthodontic appliance material: Impact of alternative post-rinsing solutions on the roughness, flexural strength and cytotoxicity.

Dent Mater

Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany; ADMiRE Lab - Additive Manufacturing, intelligent Robotics, Sensors and Engineering, School of Engineering and IT, Carinthia University of Applied Sciences, Europastraße 4, 9524 Vi

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: The present study evaluated the effect of different rinsing postprocessing solutions on surface characteristics, flexural strength, and cytotoxicity of an additive manufactured polymer for orthodontic appliances. These solutions have been deemed an alternative to the standard isopropanol which is a flammable liquid, known to have toxic effects.

Methods: Tested specimens were manufactured using direct light processing of an orthodontic appliance polymer (FREEPRINT® splint 2.0, Detax) and post-processed with different post-rinsing solutions, including isopropanol (IPA), ethanol (EtOH), EASY 3D Cleaner (EYC), Yellow Magic7 (YM7), and RESINAWAY (RAY), respectively. All groups were post-cured following the manufacturer's instructions. Surface topography and roughness (Ra and Rv) were evaluated. In addition, flexural strength was measured by a three-point bending test. An extract test was performed to evaluate cytotoxicity. The data were analyzed by the Kruskal-Wallis test with Dunn's multiple comparisons test (p < 0.05).

Results: Various post-rinsing solutions did not significantly affect the roughness values (Ra and Rv). Specimens post-processed with EtOH (98.1 ± 12.4 MPa) and EYC (101.1 ± 6.3 MPa) exhibited significantly lower flexural strength compared to the groups of IPA (110.7 ± 5.3 MPa), RAY (112.1 ± 5.6 MPa) and YM7 (117.3 ± 5.9 MPa), respectively. Finally, there were no cytotoxic effects of parts cleaned with different post-rinsing solutions.

Significance: Considering the use of 3D-printed orthodontic appliance materials, different rinsing postprocessing procedures did not affect surface characteristics. However, the flexural strength was significantly influenced, which could be attributed to the chemical ingredients of the post-rinsing solutions. Various post-rinsing treatments had no alternation concerning cytocompatibility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2022.06.010DOI Listing

Publication Analysis

Top Keywords

flexural strength
12
rinsing postprocessing
8
orthodontic appliance
8
post-rinsing solutions
8
strength cytotoxicity
8
postprocessing procedure
4
procedure 3d-printed
4
3d-printed orthodontic
4
appliance material
4
material impact
4

Similar Publications

Background Of The Study: known for its bioactive phytochemicals and antimicrobial potential; however, studies evaluating its outcome on the color, mechanical properties and antimicrobial activity of 3D-printed provisional dental resins are lacking. So this study evaluate the effect of seed extract incorporation on the color assessment, flexural strength, compressive strength, microhardness and antimicrobial activity of 3D-printed provisional crown and bridge resin.

Materials And Methods: A total of 240 samples were prepared, with 60 samples allocated to four groups based on 0 %, 1.

View Article and Find Full Text PDF

Electromagnetic pollution poses significant risks to electronic devices and human health, highlighting the need for mechanically robust, lightweight, and cost-effective electromagnetic interference (EMI) shielding materials. 3D-printed structures with nanomaterial-engineered surfaces offer a promising method for tailoring mechanical and electrical properties through multiscale design. Herein, we present a facile strategy for fabricating lightweight and flexible EMI shielding structures by chemical deposition of nanostructured metal coatings onto 3D-printed polymeric substrates.

View Article and Find Full Text PDF

Water resistance and hydration mechanism of phosphogypsum cemented paste backfill under composite curing agent modification.

Environ Res

September 2025

School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Safe and Green Mining of Metal Mines with Cemented Paste Backfill, National Mine Safety Administration, University of Science and Technology Beijing, Beijing 100083, Chi

Cemented paste backfill has made outstanding contributions to the large-scale consumption of phosphogypsum (PG), but poor water resistance significantly weakens the mechanical strength, promotes the leaching of total soluble phosphate (TP) and fluoride ions (F), and reduces its attractiveness in mine engineering. This research synthesized a curing agent (CA) using sodium methylsilicate, sodium silicate, and polyaluminum chloride (PAC). PG produced from Deyang Haohua Qingping Phosphate Mine Co.

View Article and Find Full Text PDF

This study provides valuable guidance for simplifying fabrication procedures and enhancing the structural integrity and safety of carbon fiber (CF) laminate transfemoral (TF) prosthetic sockets. While the high specific strength of CF laminate sockets offers advantages over conventional plastics, essential production data-their orientation-dependent strength and optimal cure conditions-are lacking, often requiring complex, costly cure cycles. This study investigated (i) the influence of fiber orientation on TF prosthetic CF socket strength via finite element analysis (FEA) during standing, and (ii) optimal single-step Vacuum-Bag-Only (VBO) cure conditions for prepreg in a low-cost conventional oven.

View Article and Find Full Text PDF

Unlabelled: Dual-energy x-ray absorptiometry (DXA)-derived areal bone mineral density (BMD) remains the clinical standard for assessing osteoporosis risk, yet it fails to identify over 75% of individuals who sustain fragility fractures. Direct in vivo mechanical assessment of cortical bone strength may address this diagnostic gap by capturing structural and material properties that govern whole-bone strength but are not reflected by BMD. We conducted a multicenter case-control study with cross-sectional assessment to compare ulna flexural rigidity, a biomechanical property correlated with whole-bone strength (R² ≈ 0.

View Article and Find Full Text PDF