Identification of Age-associated Proteins and Functional Alterations in Human Retinal Pigment Epithelium.

Genomics Proteomics Bioinformatics

Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China; Branch of National Clinical Research Center for Ocular Disease, Henan Provincial People's Hospital, Zhengzhou 450003, China; Academy of Medical Sciences, Z

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Retinal pigment epithelium (RPE) has essential functions, such as nourishing and supporting the neural retina, and is of vital importance in the pathogenesis of age-related retinal degeneration. However, the exact molecular changes of RPE during aging remain poorly understood. Here, we isolated human primary RPE (hRPE) cells from 18 eye donors distributed over a wide age range (10-67 years old). A quantitative proteomic analysis was performed to analyze changes in their intracellular and secreted proteins. Age-group related subtypes and age-associated proteins were revealed and potential age-associated mechanisms were validated in ARPE-19 and hRPE cells. The results of proteomic data analysis and verifications suggest that RNF123- and RNF149-related protein ubiquitination plays an important role in protecting hRPE cells from oxidative damage during aging. In older hRPE cells, apoptotic signaling-related pathways were up-regulated, and endoplasmic reticulum organization was down-regulated both in the intracellular and secreted proteomes. Our work paints a detailed molecular picture of hRPE cells during the aging process and provides new insights into the molecular characteristics of RPE during aging and under other related clinical retinal conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9880895PMC
http://dx.doi.org/10.1016/j.gpb.2022.06.001DOI Listing

Publication Analysis

Top Keywords

hrpe cells
20
age-associated proteins
8
retinal pigment
8
pigment epithelium
8
rpe aging
8
intracellular secreted
8
hrpe
5
cells
5
identification age-associated
4
proteins functional
4

Similar Publications

The retinal pigment epithelium (RPE) is central to retinal health and immune regulation. In diseases, such as proliferative vitreoretinopathy (PVR), dysregulated RPE function, driven by aberrant signaling pathways like mitogen-activated protein kinase (MAPK), contributes to fibrotic membrane formation and retinal detachment. Tacrolimus, an immunosuppressive agent, has shown potential to modulate signaling beyond immune cells, but its effect on MAPK signaling in RPE cells remains unclear.

View Article and Find Full Text PDF

Background: Low-level red light (LLRL) irradiation may inhibit myopia occurrence and progression. Understanding how LLRL inhibits fibrosis in human retinal pigment epithelial (hRPE) cells is critical to inhibiting myopia progression and developing novel therapeutic strategies. Here, we explored the effects of LLRL on hRPE cells in a myopia-simulating hypoxic microenvironment and elucidated the mechanisms through which it inhibits scleral remodeling.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is a common cause of blindness worldwide, and it is projected to affect several million individuals by 2040. The human retinal pigment epithelium (hRPE) degenerates in dry AMD, prompting the need to develop stem cell therapies to replace the lost tissue by autologous transplantation and restore the visual function. Nevertheless, the molecular factors behind the hRPE cell fate determination have not been elucidated.

View Article and Find Full Text PDF

Background: The retinal pigment epithelium (RPE) degeneration and subsequent retinal atrophy are hallmarks of age-related macular degeneration (AMD). Amyloid-beta (Aβ), the primary component of amyloid plaques in Alzheimer's disease (AD), is also present within drusen and is considered a critical factor contributing to RPE degeneration in AMD. Recent findings indicate that Aβ-induced inflammation plays a role in RPE degeneration.

View Article and Find Full Text PDF

The retinal pigment epithelium (RPE) plays a crucial role in maintaining retinal homeostasis, and dysregulation of the transforming growth factor-beta (TGF-β) signaling pathways contributes to retinal fibrosis and inflammatory diseases, including proliferative vitreoretinopathy (PVR). Tacrolimus (FK506), an immunosuppressant, has shown potential antifibrotic properties, but its effects on TGF-β-related genes and microRNAs (miRNAs) in RPE cells remain unclear. Human RPE (H-RPE) cells were treated with lipopolysaccharide (LPS) to induce inflammation and subsequently exposed to tacrolimus.

View Article and Find Full Text PDF