98%
921
2 minutes
20
The molecular biology and genetics of the Ni-Cd-Zn hyperaccumulator Noccaea caerulescens has been extensively studied, but no information is yet available on Ni and Zn redistribution and mobilization during seed germination. Due to the different physiological functions of these elements, and their associated transporter pathways, we expected differential tissue distribution and different modes of translocation of Ni and Zn during germination. This study used synchrotron X-ray fluorescence tomography techniques as well as planar elemental X-ray imaging to elucidate elemental (re)distribution at various stages of the germination process in contrasting accessions of N. caerulescens. The results show that Ni and Zn are both located primarily in the cotyledons of the emerging seedlings and Ni is highest in the ultramafic accessions (up to 0.15 wt%), whereas Zn is highest in the calamine accession (up to 600 μg g-1). The distribution of Ni and Zn in seeds was very similar, and neither element was translocated during germination. The Fe maps were especially useful to obtain spatial reference within the seeds, as it clearly marked the vasculature. This study shows how a multimodal combination of synchrotron techniques can be used to obtain powerful insights about the metal distribution in physically intact seeds and seedlings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226517 | PMC |
http://dx.doi.org/10.1093/mtomcs/mfac026 | DOI Listing |
Nature
September 2025
National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.
Controlling spin currents, that is, the flow of spin angular momentum, in small magnetic devices, is the principal objective of spin electronics, a main contender for future energy-efficient information technologies. A pure spin current has never been measured directly because the associated electric stray fields and/or shifts in the non-equilibrium spin-dependent distribution functions are too small for conventional experimental detection methods optimized for charge transport. Here we report that resonant inelastic X-ray scattering (RIXS) can bridge this gap by measuring the spin current carried by magnons-the quanta of the spin wave excitations of the magnetic order-in the presence of temperature gradients across a magnetic insulator.
View Article and Find Full Text PDFNature
September 2025
Research Center for Industries of the Future, Westlake University, Hangzhou, China.
The electrolyte-electrode interface serves as the foundation for a myriad of chemical and physical processes. In battery chemistry, the formation of a well-known solid-electrolyte interphase (SEI) plays a pivotal role in ensuring the reversible operations of rechargeable lithium-ion batteries (LIBs). However, characterizing the precise chemical composition of the low crystallinity and highly sensitive SEI presents a formidable challenge.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
September 2025
Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, Vienna, Austria.. Electronic address:
Using the stable synthetic analogue 3-aza-dehydroxylysyl-phosphatidylglycerol (3adLPG), the putative role of native staphylococcal LPG in inhibiting the antibiotic daptomycin from binding to its target phosphatidylglycerol (PG), was investigated with respect to interfacial interactions between these lipids, daptomycin, and calcium ions. The influence of lipid monolayer/bilayer composition and interfacial ion concentrations upon the structure and integrity of model membranes were probed after daptomycin challenge using a combination of surface x-ray scattering techniques and fluorescence assays. In models representing the membrane composition of the daptomycin susceptible phenotype consisting of PG/3adLPG in a 7:3 M ratio, calcium ions drive the formation of two separate phases; Ca cross-linked PG/PG pairs and PG/3adLPG ion pairs.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.
We have observed the signatures of valence electron rearrangement in photoexcited ammonia using ultrafast hard x-ray scattering. Time-resolved x-ray scattering is a powerful tool for imaging structural dynamics in molecules because of the strong scattering from the core electrons localized near each nucleus. Such core-electron contributions generally dominate the differential scattering signal, masking any signatures of rearrangement in the chemically important valence electrons.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Okayama University, Department of Physics, Okayama 700-8530, Japan.
The doped topological insulator Cu_{x}Bi_{2}Se_{3} has attracted considerable attention as a new platform for studying novel properties of spin-triplet and topological superconductivity. In this work, we performed synchrotron x-ray diffraction measurements on Cu_{x}Bi_{2}Se_{3} (0.24≤x≤0.
View Article and Find Full Text PDF