98%
921
2 minutes
20
Alterations in mitochondrial function are an important control variable in the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), while also noted by increased de novo lipogenesis (DNL) and hepatic insulin resistance. We hypothesized that the organization and function of a mitochondrial electron transport chain (ETC) in this pathologic condition is a consequence of shifted substrate availability. We addressed this question using a transgenic mouse model with increased hepatic insulin resistance and DNL due to constitutively active human SREBP-1c. The abundance of ETC complex subunits and components of key metabolic pathways are regulated in the liver of these animals. Further omics approaches combined with functional assays in isolated liver mitochondria and primary hepatocytes revealed that the SREBP-1c-forced fatty liver induced a substrate limitation for oxidative phosphorylation, inducing enhanced complex II activity. The observed increased expression of mitochondrial genes may have indicated a counteraction. In conclusion, a shift of available substrates directed toward activated DNL results in increased electron flows, mainly through complex II, to compensate for the increased energy demand of the cell. The reorganization of key compounds in energy metabolism observed in the SREBP-1c animal model might explain the initial increase in mitochondrial function observed in the early stages of human MAFLD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224893 | PMC |
http://dx.doi.org/10.3390/ijms23126873 | DOI Listing |
Funct Integr Genomics
September 2025
Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
Keloid scarring and Metabolic Syndrome (MS) are distinct conditions marked by chronic inflammation and tissue dysregulation, suggesting shared pathogenic mechanisms. Identifying common regulatory genes could unveil novel therapeutic targets. Methods.
View Article and Find Full Text PDFRev Cardiovasc Med
August 2025
Department of Cardiovascular Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, 030032 Taiyuan, Shanxi, China.
The AMP-activated protein kinase (AMPK) alpha (AMPK) subunit is the catalytic subunit in the AMPK complex and includes both 1 and 2 isoforms. Phosphorylation of upstream kinases at the Thr172 site in the -subunit is critical for AMPK activation. The kinases upstream of AMPK include liver kinase B1 (LKB1), calcium/calmodulin-dependent protein kinase kinase (CaMKK), and transforming growth factor -activated kinase 1 (TAK1).
View Article and Find Full Text PDFCancer Biol Med
September 2025
Yan'an Key Laboratory of Microbial Drug Innovation and Transformation, Yan'an Medical School of Yan'an University, Yan'an 716000, China.
The occurrence and progression of liver cancer are closely associated with mitochondrial dysfunction. Mitochondria exhibit characteristics, such as decreased oxidative phosphorylation efficiency, abnormal accumulation of reactive oxygen species in liver cancer and promoting tumor proliferation and drug resistance through the Warburg effect, as the core of energy metabolism and apoptosis regulation. Mutations in mitochondrial DNA (mtDNA) and dysregulation of mitochondrial autophagy (mitophagy) further enhance the invasive and metastatic capabilities of liver cancer.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China; South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center Zhanjiang, Guangdong 524088, China. Electronic address:
Aflatoxin B1 (AFB1)-induced hepatotoxicity is a common toxic disease in poultry farming. However, there is currently a lack of effective pharmaceutical interventions for treating AFB1. Astaxanthin (AST), a natural carotenoid, exhibits potent antioxidant and immune-enhancing properties.
View Article and Find Full Text PDFJCI Insight
September 2025
Division of Nephrology, Boston University Chobanian & Avedisian School of Medicine, Boston, United States of America.
Background: Active vitamin D metabolites, including 25-hydroxyvitamin D (25D) and 1,25-dihydroxyvitamin D (1,25D), have potent immunomodulatory effects that attenuate acute kidney injury (AKI) in animal models.
Methods: We conducted a phase 2, randomized, double-blind, multiple-dose, 3-arm clinical trial comparing oral calcifediol (25D), calcitriol (1,25D), and placebo among 150 critically ill adult patients at high-risk of moderate-to-severe AKI. The primary endpoint was a hierarchical composite of death, kidney replacement therapy (KRT), and kidney injury (baseline-adjusted mean change in serum creatinine), each assessed within 7 days following enrollment using a rank-based procedure.