J Cachexia Sarcopenia Muscle
June 2025
Background: Deterioration of functional capacity mostly determinates frailty in older patients with cardiovascular disease (CVD). Elucidating the pathophysiological mechanisms of physical frailty is an important goal for improving functional health-related outcomes. Our objective was the determination of the transcriptomic signature of physical frailty phenotypes in older patients undergoing cardiac surgery.
View Article and Find Full Text PDFFront Physiol
March 2025
Myokines released by skeletal muscle in response to contraction may contribute to the health-promoting effects of exercise. Previous studies with cultured rodent and human myotubes have revealed highly complex patterns of myokine secretion. However, the commonalities and differences in the secretory response of the different cell models have not been explored, limiting the interpretation of these results.
View Article and Find Full Text PDFInsulin is a pleiotropic hormone that elicits its metabolic and mitogenic actions through numerous rapid and reversible protein phosphorylations. The temporal regulation of insulin's intracellular signaling cascade is highly complex and insufficiently understood. We conduct a time-resolved analysis of the global insulin-regulated phosphoproteome of differentiated human primary myotubes derived from satellite cells of healthy donors using high-resolution mass spectrometry.
View Article and Find Full Text PDFThe athlete's paradox states that intramyocellular triglyceride accumulation associates with insulin resistance in sedentary but not in endurance-trained humans. Underlying mechanisms and the role of muscle lipid distribution and composition on glucose metabolism remain unclear. We compared highly trained athletes (ATHL) with sedentary normal weight (LEAN) and overweight-to-obese (OVWE) male and female individuals.
View Article and Find Full Text PDFBackground: High-intensity interval training (HIIT) has been shown to improve cardiorespiratory fitness (V˙O max) but may ameliorate insulin sensitivity only in insulin-resistant humans. It is yet unclear whether these benefits persist after detraining and to which extent duration and effectiveness of metabolic improvements differ between individuals without and with prediabetes or type 2 diabetes (T2D). Understanding these differences is relevant for developing targeted exercise training modes for individuals with different stages of dysglycemia.
View Article and Find Full Text PDFAims: We examined the association of the G allele in the single-nucleotide polymorphism (SNP) rs738409 in the third exon of patatin-like phospholipase domain-containing 3 gene (PNPLA3) gene, with chronic kidney disease in diabetes endotypes.
Methods: Participants with recent-onset diabetes (n = 707) from the prospective German Diabetes Study (GDS) underwent cluster assignment, detailed phenotyping, genotyping and magnetic resonance spectroscopy to quantify hepatocellular lipid content (HCL).
Results: Severe insulin-resistant diabetes (SIRD) had the lowest glomerular filtration rates (eGFR) and highest HCL compared to severe insulin-deficient, moderate obesity-related, moderate age-related and severe autoimmune diabetes endotypes (all p < 0.
J Cachexia Sarcopenia Muscle
October 2024
Background: The ability of skeletal muscle to respond adequately to changes in nutrient availability, known as metabolic flexibility, is essential for the maintenance of metabolic health and loss of flexibility contributes to the development of diabetes and obesity. The tumour suppressor protein, p53, has been linked to the control of energy metabolism. We assessed its role in the acute control of nutrient allocation in skeletal muscle in the context of limited nutrient availability.
View Article and Find Full Text PDFCellular heterogeneity is a well-accepted feature of tissues, and both transcriptional and metabolic diversity have been revealed by numerous approaches, including optical imaging. However, the high magnification objective lenses needed for high-resolution imaging provides information from only small layers of tissue, which can result in poor cell statistics. There is therefore an unmet need for an imaging modality that can provide detailed molecular and cellular insight within intact tissue samples in 3D.
View Article and Find Full Text PDFBackground And Purpose: Remote ischaemic preconditioning (rIPC) for cardioprotection is severely impaired in diabetes, and therapeutic options to restore it are lacking. The vascular endothelium plays a key role in rIPC. Given that the activity of endothelial nitric oxide synthase (eNOS) is inhibited by proline-rich tyrosine kinase 2 (Pyk2), we hypothesized that pharmacological Pyk2 inhibition could restore eNOS activity and thus restore remote cardioprotection in diabetes.
View Article and Find Full Text PDFSignal Transduct Target Ther
April 2024
Obesity is one of the diseases with severe health consequences and rapidly increasing worldwide prevalence. Understanding the complex network of food intake and energy balance regulation is an essential prerequisite for pharmacological intervention with obesity. G protein-coupled receptors (GPCRs) are among the main modulators of metabolism and energy balance.
View Article and Find Full Text PDFThe Rab-GTPase-activating protein (RabGAP) TBC1D4 (AS160) represents a key component in the regulation of glucose transport into skeletal muscle and white adipose tissue (WAT) and is therefore crucial during the development of insulin resistance and type 2 diabetes. Increased daily activity has been shown to be associated with improved postprandial hyperglycemia in allele carriers of a loss-of-function variant in the human TBC1D4 gene. Using conventional Tbc1d4-deficient mice (D4KO) fed a high-fat diet, we show that moderate endurance exercise training leads to substantially improved glucose and insulin tolerance and enhanced expression levels of markers for mitochondrial activity and browning in WAT from D4KO animals.
View Article and Find Full Text PDFImpaired skeletal muscle glucose uptake is a key feature in the development of insulin resistance and type 2 diabetes. Skeletal muscle glucose uptake can be enhanced by a variety of different stimuli, including insulin and contraction as the most prominent. In contrast to the clearance of glucose from the bloodstream in response to insulin stimulation, exercise-induced glucose uptake into skeletal muscle is unaffected during the progression of insulin resistance, placing physical activity at the center of prevention and treatment of metabolic diseases.
View Article and Find Full Text PDFRecently, we have shown that after partial hepatectomy (PHx), an increased hepatic blood flow initiates liver growth in mice by vasodilation and mechanically-triggered release of angiocrine signals. Here, we use mass spectrometry to identify a mechanically-induced angiocrine signal in human hepatic endothelial cells, that is, myeloid-derived growth factor (MYDGF). We show that it induces proliferation and promotes survival of primary human hepatocytes derived from different donors in two-dimensional cell culture, via activation of mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3).
View Article and Find Full Text PDFDiabetes Obes Metab
January 2024
Aims: Exercise training induces white adipose tissue (WAT) beiging and improves glucose homeostasis and mitochondrial function in rodents. This could be relevant for type 2 diabetes in humans, but the effect of physical fitness on beiging of subcutaneous WAT (scWAT) remains unclear. This translational study investigates if beiging of scWAT associates with physical fitness in healthy humans and recent-onset type 2 diabetes and if a voluntary running wheel intervention is sufficient to induce beiging in mice.
View Article and Find Full Text PDFNutr Metab Cardiovasc Dis
September 2023
Background And Aims: Increased hepatocellular lipid content (HCL) is linked to insulin resistance, risk of type 2 diabetes and related complications. Conversely, a single-nucleotide polymorphism (TM6SF2; rs58542926) in the transmembrane 6 superfamily member 2-gene has been associated with nonalcoholic fatty liver disease (NAFLD), but lower cardiovascular risk. This case-control study tested the role of this polymorphism for tissue-specific insulin sensitivity during early course of diabetes.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
May 2023
Adipose tissue inflammation and insulin resistance are hallmarks in the development of metabolic diseases resulting from overweight and obesity, such as type 2 diabetes and non-alcoholic fatty liver disease. In obesity, adipocytes predominantly secrete proinflammatory adipokines that further promote adipose tissue dysfunction with negative effects on local and systemic insulin sensitivity. Expression of the serpin vaspin (SERPINA12) is also increased in obesity and type 2 diabetes, but exhibits compensatory roles in inflammation and insulin resistance.
View Article and Find Full Text PDFInt J Obes (Lond)
June 2023
Background/objective: Compelling evidence indicates that myokines act in an autocrine, paracrine and endocrine manner to alter metabolic homeostasis. The mechanisms underlying exercise-induced changes in myokine secretion remain to be elucidated. Since exercise acutely decreases oxygen partial pressure (pO) in skeletal muscle (SM), the present study was designed to test the hypothesis that (1) hypoxia exposure impacts myokine secretion in primary human myotubes and (2) exposure to mild hypoxia in vivo alters fasting and postprandial plasma myokine concentrations in humans.
View Article and Find Full Text PDFEpisodes of chronic stress can result in psychic disorders like post-traumatic stress disorder, but also promote the development of metabolic syndrome and type 2 diabetes. We hypothesize that muscle, as main regulator of whole-body energy expenditure, is a central target of acute and adaptive molecular effects of stress in this context. Here, we investigate the immediate effect of a stress period on energy metabolism in Musculus gastrocnemius in our established C57BL/6 chronic variable stress (Cvs) mouse model.
View Article and Find Full Text PDFType 2 diabetes (T2D) represents a multifactorial metabolic disease with a strong genetic predisposition. Despite elaborate efforts in identifying the genetic variants determining individual susceptibility towards T2D, the majority of genetic factors driving disease development remain poorly understood. With the aim to identify novel T2D risk genes we previously generated an N2 outcross population using the two inbred mouse strains New Zealand obese (NZO) and C3HeB/FeJ (C3H).
View Article and Find Full Text PDFImpaired proinsulin-to-insulin processing in pancreatic β-cells is a key defective step in both type 1 diabetes and type 2 diabetes (T2D) (refs. ), but the mechanisms involved remain to be defined. Altered metabolism of sphingolipids (SLs) has been linked to development of obesity, type 1 diabetes and T2D (refs.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
November 2022
High level of interleukin 6 (IL-6), released by adipocytes in an obesity-induced, low grade inflammation state, is a regulator of insulin resistance and glucose tolerance. IL-6 has also regenerative, anti-inflammatory and anti-diabetogenic functions, when secreted as myokine by skeletal muscles during physical exercise. IL-6 mainly activates cells two different receptor constellations: classic and trans-signalling, in which IL-6 initially binds to membrane-bound receptor (IL-6R) or soluble IL-6 receptor (sIL-6R) before activating signal transducing gp130 receptor.
View Article and Find Full Text PDFFront Microbiol
September 2022
Type I interferons (IFNs) are potent inhibitors of viral replication. Here, we reformatted the natural murine and human type I interferon-α/β receptors IFNAR1 and IFNAR2 into fully synthetic biological switches. The transmembrane and intracellular domains of natural IFNAR1 and IFNAR2 were conserved, whereas the extracellular domains were exchanged by nanobodies directed against the fluorescent proteins Green fluorescent protein (GFP) and mCherry.
View Article and Find Full Text PDFTo nominate novel disease genes for obesity and type 2 diabetes (T2D), we recently generated two mouse backcross populations of the T2D-susceptible New Zealand Obese (NZO/HI) mouse strain and two genetically different, lean and T2D-resistant strains, 129P2/OlaHsd and C3HeB/FeJ. Comparative linkage analysis of our two female backcross populations identified seven novel body fat-associated quantitative trait loci (QTL). Only the locus Nbw14 (NZO body weight on chromosome 14) showed linkage to obesity-related traits in both backcross populations, indicating that the causal gene variant is likely specific for the NZO strain as NZO allele carriers in both crosses displayed elevated body weight and fat mass.
View Article and Find Full Text PDF