Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To predict the two-year recurrence-free survival of patients with non-small cell lung cancer (NSCLC), we propose a prediction model using radiomic features of the inner and outer regions of the tumor. The intratumoral region and the peritumoral regions from the boundary to 3 cm were used to extract the radiomic features based on the intensity, texture, and shape features. Feature selection was performed to identify significant radiomic features to predict two-year recurrence-free survival, and patient classification was performed into recurrence and non-recurrence groups using SVM and random forest classifiers. The probability of two-year recurrence-free survival was estimated with the Kaplan-Meier curve. In the experiment, CT images of 217 non-small-cell lung cancer patients at stages I-IIIA who underwent surgical resection at the Veterans Health Service Medical Center (VHSMC) were used. Regarding the classification performance on whole tumors, the combined radiomic features for intratumoral and peritumoral regions of 6 mm and 9 mm showed improved performance (AUC 0.66, 0.66) compared to T stage and N stage (AUC 0.60), intratumoral (AUC 0.64) and peritumoral 6 mm and 9 mm classifiers (AUC 0.59, 0.62). In the assessment of the classification performance according to the tumor size, combined regions of 21 mm and 3 mm were significant when predicting outcomes compared to other regions of tumors under 3 cm (AUC 0.70) and 3 cm~5 cm (AUC 0.75), respectively. For tumors larger than 5 cm, the combined 3 mm region was significant in predictions compared to the other features (AUC 0.71). Through this experiment, it was confirmed that peritumoral and combined regions showed higher performance than the intratumoral region for tumors less than 5 cm in size and that intratumoral and combined regions showed more stable performance than the peritumoral region in tumors larger than 5 cm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221791PMC
http://dx.doi.org/10.3390/diagnostics12061313DOI Listing

Publication Analysis

Top Keywords

radiomic features
20
two-year recurrence-free
16
recurrence-free survival
16
combined regions
12
regions
8
predict two-year
8
lung cancer
8
intratumoral region
8
peritumoral regions
8
classification performance
8

Similar Publications

Rationale And Objectives: Double expression lymphoma (DEL) is an independent high-risk prognostic factor for primary CNS lymphoma (PCNSL), and its diagnosis currently relies on invasive methods. This study first integrates radiomics and habitat radiomics features to enhance preoperative DEL status prediction models via intratumoral heterogeneity analysis.

Materials And Methods: Clinical, pathological, and MRI imaging data of 139 PCNSL patients from two independent centers were collected.

View Article and Find Full Text PDF

Radiomics nomogram from multiparametric magnetic resonance imaging for preoperative prediction of substantial lymphovascular space invasion in endometrial cancer.

Abdom Radiol (NY)

September 2025

Department of Radiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China.

Background: We aimed to develop and validate a radiomics-based machine learning nomogram using multiparametric magnetic resonance imaging to preoperatively predict substantial lymphovascular space invasion in patients with endometrial cancer.

Methods: This retrospective dual-center study included patients with histologically confirmed endometrial cancer who underwent preoperative magnetic resonance imaging (MRI). The patients were divided into training and test sets.

View Article and Find Full Text PDF

Objectives: In non-small cell lung cancer (NSCLC), non-invasive alternatives to biopsy-dependent driver mutation analysis are needed. We reviewed the effectiveness of radiomics alone or with clinical data and assessed the performance of artificial intelligence (AI) models in predicting oncogene mutation status.

Materials And Methods: A PRISMA-compliant literature review for studies predicting oncogene mutation status in NSCLC patients using radiomics was conducted by a multidisciplinary team.

View Article and Find Full Text PDF

Purpose: To predict metastasis-free survival (MFS) for patients with prostate adenocarcinoma (PCa) treated with androgen deprivation therapy (ADT) and external radiotherapy using clinical factors and radiomics extracted from primary tumor and node volumes in pre-treatment PSMA PET/CT scans.

Materials/methods: Our cohort includes 134 PCa patients (nodal involvement in 28 patients). Gross tumor volumes of primary tumor (GTVp) and nodes (GTVn) on CT and PET scans were segmented.

View Article and Find Full Text PDF

Dosiomics-guided deep learning for radiation esophagitis prediction in lung cancer: optimal region of interest definition via multi-branch fusion auxiliary learning.

Radiother Oncol

September 2025

Department of Radiotherapy Center, 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325000, China. Electronic address:

Background: Accurate delineation of regions of interest (ROIs) is critical for feature extraction and selection in radiomics-based prediction models.

Purpose: To develop a combined dosiomics and deep learning (DL) model for predicting grade ≥ 2 radiation esophagitis (RE) in lung cancer patients undergoing radiotherapy, we propose a multi-task auxiliary learning approach to define accurate and objective ROIs based on radiation dose distribution (RDD) images.

Materials And Methods: Lung cancer patients who underwent radiotherapy were gathered retrospectively from hospital 1 (January 2020 and December 2022) for model development.

View Article and Find Full Text PDF