98%
921
2 minutes
20
Digital Elevation Models (DEMs) of planet Mars are crucial for many remote sensing applications and for landing site characterization of rover missions. Shape from Shading (SfS) is known to work well as a complementary method to greatly enhance the quality of photogrammetrically obtained DEMs of planetary surfaces with respect to the effective resolution and the overall accuracy. In this work, we extend our previous lunar shape and albedo from shading framework by embedding the Hapke photometric reflectance model in an atmospheric model such that it is applicable to Mars. Compared to previous approaches, the proposed method is capable of directly estimating the atmospheric parameters from a given scene without the need for external data, and assumes a spatially varying albedo. The DEMs are generated from imagery of the Context Camera (CTX) onboard the Mars Reconnaissance Orbiter (MRO) and are validated for clear and opaque atmospheric conditions. We analyze the necessity of using atmospheric compensation depending on the atmospheric conditions. For low optical depths, the Hapke model without an atmospheric component is still applicable to the Martian surface. For higher optical depths, atmospheric compensation is required to obtain good quality DEMs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9225509 | PMC |
http://dx.doi.org/10.3390/jimaging8060158 | DOI Listing |
BMC Plant Biol
September 2025
Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt.
Background: Because of their ecological, aesthetic, and beneficial characteristics, native desert plants are highly significant. They can also be utilized in landscape architecture, particularly in environments with harsh conditions. The present study aims to evaluate the potential utilization of the wild desert plants Pancratium maritimum L.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Department of Geographic Information Science, Faculty of Geography, Universitas Gadjah Mada, Sleman, Yogyakarta, DIY, 55281, Indonesia.
Understanding seagrass dynamics is crucial for the effective management and conservation of seagrass meadows. However, such information remains limited for many regions worldwide, including Kuta Mandalika on Lombok Island, Indonesia. This rapidly developing coastal area, which is home to both tourism infrastructure and an international race circuit, hosts extensive seagrass meadows whose condition and dynamics require careful assessment.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Department of Geography, Institute of Integrated & Honors Studies, Kurukshetra University, Kurukshetra, 136119, Haryana, India.
The Chhilchhila Wildlife Sanctuary serves as a vital wintering ground and key stopover for the Central Asian Flyway, providing essential habitats for numerous migratory bird species. Fortnightly field surveys for 2 years were conducted periodically from October 2022 to September 2024, employing line-cum-point transect counts across four transects of the study area. A total of 62 winter migrant avian species from 10 orders, 26 families, and 42 genera were recorded.
View Article and Find Full Text PDFNat Plants
September 2025
Guangdong Province Data Center of Terrestrial and Marine Ecosystems Carbon Cycle, School of Atmospheric Sciences, School of Ecology, Sun Yat-sen University, Zhuhai, China.
Increasing leaf area and extending vegetation growing seasons are two primary drivers of global greening, which has emerged as one of the most significant responses to climate change. However, it remains unclear how these two leaf acclimation strategies would vary across forests at a large spatial scale. Here, using multiple satellite-based datasets and field measurements, we analysed the temporal changes (Δ) in maximal leaf area index (LAI) and length of the growing season (LOS) from 2002 to 2021 across deciduous broadleaf forests (DBFs) in the middle to high latitudes.
View Article and Find Full Text PDFNat Microbiol
September 2025
School of Oceanography, University of Washington, Seattle, WA, USA.
The cyanobacterium Prochlorococcus is Earth's most abundant photosynthetic organism and crucial to oceanic ecosystems. However, its sensitivity to a changing climate remains unclear. Here we analysed decade-long field measurements using continuous-flow cytometry from our SeaFlow instrument, collecting per-cell chlorophyll fluorescence and size data for ~800 billion phytoplankton cells across the tropical and subtropical Pacific Ocean to quantify the temperature dependence of cell division.
View Article and Find Full Text PDF