Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two-dimensional (2D) devices and their van der Waals (vdW) heterostructures attract considerable attention owing to their potential for next-generation logic and memory applications. In addition, 2D devices are projected to have high integration capabilities, while maintaining nanoscale thickness. However, the fabrication of 2D devices and their circuits is challenging because of the high precision required to etch and pattern ultrathin 2D materials for integration. Here, the fabrication of a graphene via contact architecture to electrically connect graphene electrodes (or leads) embedded in vdW heterostructures is demonstrated. Graphene via contacts comprising of edge and fluorinated graphene (FG) electrodes are fabricated by successive fluorination and plasma etching processes. A one-step fabrication process that utilizes the graphene contacts is developed for a vertically integrated complementary inverter based on n- and p-type 2D field-effect transistors (FETs). This study provides a promising method to fabricate vertically integrated 2D devices, which are essential in 2D material-based devices and circuits.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202200882DOI Listing

Publication Analysis

Top Keywords

graphene contact
8
contact architecture
8
vdw heterostructures
8
devices circuits
8
graphene electrodes
8
graphene contacts
8
vertically integrated
8
graphene
6
devices
6
architecture vertical
4

Similar Publications

Highly contagious respiratory infection diseases such as COVID-19 can be transmitted by inhaling virus laden liquid droplets and short-range aerosols, released by an infected person. Particularly, in hospitals, spraying of the respiratory droplets containing pathogens from the conjunctiva or mucus of a susceptible person plays a key role in transferring the infectious diseases. N95 filtering respirators are a critical personal protective equipment.

View Article and Find Full Text PDF

Engineering aspects and materials for next generation neural implants.

Prog Mol Biol Transl Sci

September 2025

Aiiso Yufeng Li Family Department of Chemical and Nanoengineering, University of California, San Diego, La Jolla, CA, United States. Electronic address:

Nano-electronics based neural implants represent a rapidly advancing interdisciplinary domain at the intersection of bioelectronics, nanotechnology, and neuro-engineering. These implantable systems are engineered to restore, modulate, or augment neural functions by establishing high-fidelity, long-term interfaces with neural tissues. The design of such implants necessitates careful consideration of both materials and structural configurations to ensure biocompatibility, mechanical compliance, electrical functionality, and chronic stability.

View Article and Find Full Text PDF

Molybdenum disulfide (MoS) has recently emerged as a promising material for the development of triboelectric nanogenerators (TENGs) owing to its inherently negative triboelectric properties when paired with polymeric layers, along with its notable transparency and mechanical flexibility. However, MoS-based TENGs operating in the contact-separation mode encounter critical limitations, including mechanical wear and limited triboelectric performance, particularly within the constraints of conventional 2D geometries. This paper reports the novel one-step laser-assisted synthesis of hemispherical MoS through the controlled nucleation and growth of MoS precursor seeds.

View Article and Find Full Text PDF

Electrode contact properties with two-dimensional (2D) channel materials decisively determine the nanodevice's overall performance. A recently synthesized semiconducting CuSe monolayer has emerged as a promising candidate for high-performance device channels due to its high carrier mobility, excellent environmental stability, and a reversible thermal-driven phase transition accompanied by a direct-to-indirect band-gap variation. Herein, to identify promising high-quality electrodes for CuSe, the contact properties with various metals (Al, Ag, Au, Ni, and Co), as well as the modulation effects of graphene and -BN interlayers, are systematically investigated based on first-principles calculations.

View Article and Find Full Text PDF

High-quality narrow black phosphorus nanoribbons with nearly atomically smooth edges and well-defined edge orientation.

Nat Mater

September 2025

National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Department of Micro/Nano Electronics, School of Integrated Circuits, Shanghai Jiao Tong University, Shanghai, China.

Black phosphorus nanoribbons (BPNRs) with a tunable bandgap and intriguing electronic and optical properties hold strong potential for logic applications. However, efficiently producing high-quality BPNRs with precise control over their size and structure remains a great challenge. Here we achieved high-quality, narrow and clean BPNRs with nearly atomically smooth edges and well-defined edge orientation at high yield (up to ~95%) through the sonochemical exfoliation of the synthesized bulk BP crystals with a slightly enlarged lattice parameter along the armchair direction.

View Article and Find Full Text PDF