Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many coastal ecosystems, such as coral reefs and seagrass meadows, currently experience overgrowth by fleshy algae due to the interplay of local and global stressors. This is usually accompanied by strong decreases in habitat complexity and biodiversity. Recently, persistent, mat-forming fleshy red algae, previously described for the Black Sea and several Atlantic locations, have also been observed in the Mediterranean. These several centimetre high mats may displace seagrass meadows and invertebrate communities, potentially causing a substantial loss of associated biodiversity. We show that the sessile invertebrate biodiversity in these red algae mats is high and exceeds that of neighbouring seagrass meadows. Comparative biodiversity indices were similar to or higher than those recently described for calcifying green algae habitats and biodiversity hotspots like coral reefs or mangrove forests. Our findings suggest that fleshy red algae mats can act as alternative habitats and temporary sessile invertebrate biodiversity reservoirs in times of environmental change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9192683PMC
http://dx.doi.org/10.1038/s42003-022-03523-5DOI Listing

Publication Analysis

Top Keywords

red algae
16
fleshy red
12
algae mats
12
sessile invertebrate
12
invertebrate biodiversity
12
seagrass meadows
12
coral reefs
8
biodiversity
7
algae
6
fleshy
4

Similar Publications

Photosynthetic organisms have evolved diverse strategies to adapt to fluctuating light conditions, balancing efficient light capture with photoprotection. In green algae and land plants, this involves specialized light-harvesting complexes (LHCs), non-photochemical quenching, and state transitions driven by dynamic remodeling of antenna proteins associated with Photosystems (PS) I and II. Euglena gracilis, a flagellate with a secondary green plastid, represents a distantly related lineage whose light-harvesting regulation remains poorly understood.

View Article and Find Full Text PDF

Boat noise alters behaviour of two coral reef macroinvertebrates, Lambis lambis and Tridacna maxima.

Mar Pollut Bull

September 2025

Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.

Boat noise has been shown to distract and cause harm to many marine organisms. Most of the study effort has focused on fish & marine mammals, even though invertebrates represent over 92 % of all marine life. The few studies conducted on invertebrates have demonstrated clear negative effects of anthropogenic noise pollution.

View Article and Find Full Text PDF

Agar as a natural polymer: From culture media to cutting-edge biomedical applications.

Carbohydr Polym

November 2025

Department of Food Science and Technology, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran. Electronic address:

Agar, a natural polysaccharide derived primarily from red algae, has emerged as a versatile/biocompatible material for biomedical applications. Its unique physicochemical attributes, e.g.

View Article and Find Full Text PDF

Two Gram-stain-negative and rod-shaped bacteria, designated as RZ5 and RZ22, isolated from a red macroalgae sample, were characterized by a polyphasic approach to clarify their taxonomic position. Strain RZ5 grew at 4-33 °C (optimum, 25-28 °C), pH 6.5-8.

View Article and Find Full Text PDF

Colonization history of snow algae on Hawai'i Island.

ISME J

September 2025

Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, AK, United States.

Red-pigmented snow algae are cold-adapted (including cryophilic) photosynthetic microbes commonly found in polar and alpine snowpacks worldwide, but their dispersal across isolated cryospheres remains poorly understood. We report the occurrence of snow algae on Maunakea, Hawai'i, the most isolated cryosphere in the world, during an unusually prolonged summer snow retention event in 2023 associated with La Niña conditions. Red-pigmented algal cells were observed in snow samples collected during this event.

View Article and Find Full Text PDF