98%
921
2 minutes
20
The synthesis and characterisation of the 1-(4-cyanobiphenyl-4'-yl)-10-(4-alkylanilinebenzylidene-4'-oxy)decanes (CB10O·) are reported. This series shows a rich liquid crystal polymorphism including twist-bend nematic and smectic phases. All the homologues reported exhibit an enantiotropic conventional nematic phase. For the homologues with ≤ 10, the local packing in the nematic phases and the layer spacing in the smectic phases indicates an intercalated arrangement of the molecules. An intercalated smectic C phase is observed if /11 ≈ 0.5. Either side of this condition, the twist-bend nematic phase is observed, a novel pattern of behaviour for a series on increasing a terminal chain length. For longer chain lengths, = 12, 14, 16 and 18, two twist-bend smectic C (SmC) phases are observed, and the packing of the molecules is now of a bilayer-type. The higher temperature variant is termed SmC in which SH (single helix) refers to the presence of a short, distorted clock-type helix. In the lower temperature SmC phase, an additional longer helix is superimposed on the short one, and DH denotes double helix.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2sm00162d | DOI Listing |
Nat Commun
September 2025
Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
The phase transformation of single-element systems is a fundamental natural process with broad implications, yet many aspects remain puzzling despite their simplicity. For instance, transition metals, Tantalum (Ta) and Zirconium (Zr), commonly form body-centred cubic crystals when supercooled. However, according to large-scale computer simulations, their crystallisation rates can differ by over 100 times.
View Article and Find Full Text PDFLight Sci Appl
September 2025
National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China.
Planar optical elements incorporating space-varying Pancharatnam-Berry phase have revolutionized the manipulation of light fields by enabling continuous control over amplitude, phase, and polarization. While previous research focusing on linear functionalities using apolar liquid crystals (LCs) has attracted much attention, extending this concept to the nonlinear regime offers unprecedented opportunities for advanced optical processing. Here, we demonstrate the reconfigurable nonlinear Pancharatnam-Berry LC diffractive optics in photopatterned ion-doped ferroelectric nematics.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
McMaster University, Department of Physics and Astronomy, Hamilton, Ontario L8S 4M1, Canada.
Magnetic heat capacity measurements of a high-quality single crystal of the dipole-octupole pyrochlore Ce_{2}Hf_{2}O_{7} down to a temperature of T=0.02 K are reported. These show a two-peaked structure, with a Schottky-like peak at T_{1}∼0.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
European Laboratory for Non Linear Spectroscopy (LENS), Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (CNR-INO), via Nello Carrara 1, 50019 Sesto Fiorentino, Italy and , via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.
Single crystal x-ray diffraction measurements have been carried out on epsilon oxygen up to 30 GPa to examine the behavior of the constituent (O_{2})_{4} units. An isostructural phase transition is evidenced by lattice parameter and intracluster (O_{8}) distance discontinuities and clear changes in the equation of state at 18.1±0.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Liquid crystal elastomers (LCEs) are important soft actuators that show strong promise in many fields where traditional rigid actuators or robotics are impractical. However, their real-world applications are lacking primarily due to inadequate actuation performance and complicated fabrication processes. Here, a novel design is reported that significantly enhances actuation performance while simplifying the fabrication process.
View Article and Find Full Text PDF