Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rumen microbiota facilitates nutrition through digestion of recalcitrant lignocellulosic substrates into energy-accessible nutrients and essential metabolites. Despite the high similarity in rumen microbiome structure, there might be distinct functional capabilities that enable different ruminant species to thrive on various lignocellulosic substrates as feed. Here, we applied genome-centric metagenomics to explore phylogenetic diversity, lignocellulose-degrading potential and fermentation metabolism of biofilm-forming microbiota colonizing 11 different plant substrates in the camel rumen. Diversity analysis revealed significant variations in the community of rumen microbiota colonizing different substrates in accordance with their varied physicochemical properties. Metagenome reconstruction recovered genome sequences of 590 bacterial isolates and one archaeal lineage belonging to 20 microbial phyla. A comparison to publicly available reference genomes and rumen metagenome-assembled genomes revealed that most isolates belonged to new species with no well-characterized representatives. We found that certain low abundant taxa, including members of Verrucomicrobiota, Planctomycetota and Fibrobacterota, possessed a disproportionately large number of carbohydrate active enzymes per Mb of genome, implying their high metabolic potential to contribute to the rumen function. In conclusion, we provided a detailed picture of the diversity and functional significance of rumen microbiota colonizing feeds of varying lignocellulose composition in the camel rumen. A detailed analysis of 591 metagenome-assembled genomes revealed a network of interconnected microbiota and highlighted the key roles of certain taxonomic clades in rumen function, including those with minimal genomes (e.g., Patescibacteria). The existence of a diverse array of gene clusters encoding for secondary metabolites unveiled the specific functions of these biomolecules in shaping community structure of rumen microbiota.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177762PMC
http://dx.doi.org/10.1038/s41522-022-00309-9DOI Listing

Publication Analysis

Top Keywords

rumen microbiota
20
camel rumen
12
lignocellulosic substrates
12
microbiota colonizing
12
rumen
11
metagenome-assembled genomes
8
genomes revealed
8
rumen function
8
microbiota
7
substrates
5

Similar Publications

This experiment evaluated the effects of supplementing yeast culture ( ) on in situ ruminal degradability, rumen fermentation and microbiota responses of heifers consuming a forage-based diet. Twelve ruminally-cannulated Angus-influenced heifers were ranked by body weight ( 180 ± 4 kg) and assigned to 4 groups of 3 heifers each. Groups were enrolled in a replicated 3 × 3 Latin square design containing 3 periods of 21 d and 14-d washout intervals.

View Article and Find Full Text PDF

Background: This study addresses the global challenge of subclinical bovine mastitis (SCBM) in dairy cows, a prevalent disease causing substantial economic losses, by investigating the mechanistic basis of , a traditional herbal remedy with empirically validated efficacy but incompletely understood modes of action.

Methods: Initially, the active components of were identified using LC-MS/MS. Dose-response trials were conducted in Holstein cows ( = 24 SCBM cases; = 6 healthy controls), along with multi-omics integration, including 16S rRNA sequencing for rumen/feces microbiota and UHPLC-MS metabolomics for serum analysis.

View Article and Find Full Text PDF

Background: As an indigenous livestock species on the Tibetan Plateau, Tibetan sheep exhibit remarkable adaptability to low temperatures and nutrient-scarce environments. During the cold season, Tibetan sheep are typically managed under two feeding regimes: barn feeding (BF) and traditional grazing (TG). However, the molecular mechanisms underlying their adaptation to these distinct management strategies remain unclear.

View Article and Find Full Text PDF

Mycoplasmal pneumonia of sheep (MPS), caused by , profoundly impacts ovine productivity and survival. Although gut-lung microbiota interactions are increasingly recognized in respiratory diseases, whether similar crosstalk occurs between the lung and rumen microbiota in MPS-affected sheep remains unknown. To investigate alterations in the lung and rumen microbiota of sheep with MPS, the crosstalk between these microbial communities, and their impacts on growth phenotypes.

View Article and Find Full Text PDF

Effect of Dietary Tyrosine on Behavior and Ruminal Meta-Taxonomic Profile of Altay Sheep with Different Temperaments.

Vet Sci

July 2025

Laboratory of Metabolic Manipulation of Herbivores Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.

The objective of this study was to evaluate the effect of tyrosine on behavior and ruminal meta-taxonomic profile of Altay sheep. Twelve rams with the lowest behavioral responses to humans and twelve rams with the highest behavioral responses were sorted into calm and nervous groups, respectively. Following the 2 × 2 factorial design, the rams from each group were equally assigned two treatments of a basal diet and a diet with an extra 4 g of tyrosine for 30 d.

View Article and Find Full Text PDF