Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

When estimating full-body motion from experimental data, inverse kinematics followed by inverse dynamics does not guarantee dynamical consistency of the resulting motion, especially in movements where the trajectory depends heavily on the initial state, such as in free-fall. Our objective was to estimate dynamically consistent joint kinematics and kinetics of complex aerial movements. A 42-degrees-of-freedom model with 95 markers was personalised for five elite trampoline athletes performing various backward and forward twisting somersaults. Using dynamic optimisation, our algorithm estimated joint angles, velocities and torques by tracking the recorded marker positions. Kinematics, kinetics, angular and linear momenta, and marker tracking difference were compared to results of an Extended Kalman Filter (EKF) followed by inverse dynamics. Angular momentum and horizontal linear momentum were conserved throughout the estimated motion, as per free-fall dynamics. Marker tracking difference went from 17 ± 4 mm for the EKF to 36 ± 11 mm with dynamic optimisation tracking the experimental markers, and to 49 ± 9 mm with dynamic optimisation tracking EKF joint angles. Joint angles from the dynamic optimisations were similar to those of the EKF, and joint torques were smoother. This approach satisfies the dynamics of complex aerial rigid-body movements while remaining close to the experimental 3D marker dataset.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14763141.2022.2066015DOI Listing

Publication Analysis

Top Keywords

dynamic optimisation
16
complex aerial
12
joint angles
12
aerial movements
8
inverse dynamics
8
kinematics kinetics
8
marker tracking
8
tracking difference
8
optimisation tracking
8
ekf joint
8

Similar Publications

Background: Lung cancer (LC) is the leading cause of cancer death in Ireland, yet no national screening programme exists. While low-dose computed tomography (LDCT) screening reduces lung cancer mortality by approximately 20% in high-risk populations, its cost-effectiveness in Ireland remains uncertain. Evidence on the economic burden of lung cancer care and the feasibility of screening is needed to support policy decisions.

View Article and Find Full Text PDF

A numerical investigation of the kinematic and fluid dynamic behaviour of an intramuscular autoinjector designed for optimising injection efficiency.

Med Eng Phys

October 2025

Department of Mechanical Engineering, University of Cape Town, 7701, South Africa; Centre for Research in Computational and Applied Mechanics (CERECAM), University of Cape Town, 7701, South Africa.

The usability and versatility of autoinjectors in managing chronic and autoimmune diseases have made them increasingly attractive in medicine. However, investigations into autoinjector designs require an understanding of the kinematic properties and fluid behaviour during injection. To optimise injection efficiency, this study develops a mathematical and computational fluid dynamics (CFD) model of an IM autoinjector by investigating the effects of viscosity, needle length, needle diameter, and medication volume on the injection process.

View Article and Find Full Text PDF

Volumetric modulated arc therapy (VMAT) for lung cancer involves complex multileaf collimator (MLC) motion, which increases sensitivity to interplay effects with tumour motion. Current dynamic conformal arc methods address this issue but may limit the achievable dose distribution optimisation compared with standard VMAT. This study examined the clinical utility of a VMAT technique with monitor unit limits (VMATliMU) to mimic conformal arc delivery and reduce interplay effects while maintaining plan quality.

View Article and Find Full Text PDF

Investigation of the fundamental microscopic processes occurring in organic reactions is essential for optimising both organocatalysts and synthetic strategies. In this study, single-molecule fluorescence microscopy was employed to study the Diels-Alder reaction catalysed by a first-generation MacMillan catalyst, providing direct insights into its kinetic dynamics. This reaction proceeds via a series of reversible processes under equilibrium conditions (S ⇄ IM ⇄ IM → P, IM and IM: N,O-acetal and iminium ion intermediates, respectively).

View Article and Find Full Text PDF

Salmonella enterica serovar Typhi, the etiological agent of Typhoid fever, remains a critical public health concern associated with high morbidity in many developing countries. The widespread emergence of multidrug-resistant (MDR) Salmonella Typhi strains against the fluoroquinolone group of antibiotics, particularly ciprofloxacin, poses a significant global therapeutic challenge with underlying resistance due to mutations in quinolone-resistance determining region (QRDR) of gyrA gene, encoding DNA gyrase subunit A (GyrA). In pursuit of alternative therapeutic candidates, the present study was designed to evaluate ciprofloxacin analogues against prevalent GyrA mutations (S83F, D87G, and D87N) to overcome fluoroquinolone resistance through machine learning (ML)-based approach.

View Article and Find Full Text PDF