Spatiotemporally Selective Molecular Imaging via Upconversion Luminescence-Controlled, DNA-Based Biosensor Technology.

Angew Chem Int Ed Engl

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, China.

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

DNA-based biosensor technologies have shown great potential in chemical and biological detection. These biosensors have been actively developed as probes for molecular imaging in live cells and in animals, allowing in situ detection of analytes in complex biological systems, elucidation of the roles of key molecules in biological processes, and the development of non-invasive diagnosis and image-guided surgery. Despite the progress made, improving the spatial-temporal precision remains a challenge in this field. In this Minireview, we describe the concepts behind spatiotemporally selective molecular imaging via the combination of engineered, light-activatable DNA-based biosensors and upconversion nanotechnology. We then highlight the application of the approach for the spatiotemporally controlled imaging of various targets in specific intracellular organelles, signal amplification, as well as the regulation of targeting activity to receptor proteins. We finally discuss the challenges and perspectives for possible future developments in this emerging field.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202204277DOI Listing

Publication Analysis

Top Keywords

molecular imaging
12
spatiotemporally selective
8
selective molecular
8
dna-based biosensor
8
imaging
4
imaging upconversion
4
upconversion luminescence-controlled
4
luminescence-controlled dna-based
4
biosensor technology
4
technology dna-based
4

Similar Publications

Background: Individuals with a family history of bipolar disorder are at increased risk of developing affective psychopathology. Longitudinal imaging studies in young people with familial risk have been limited, and cortical developmental trajectories in the progression towards illness remain obscure.

Aims: To establish high-resolution longitudinal differences in cortical structure that are associated with risk of bipolar disorder.

View Article and Find Full Text PDF

Microscopic swimmers, such as bacteria and archaea, are paradigmatic examples of active matter systems. The study of these systems has given rise to novel concepts such as rectification of bacterial swimmers, in which microstructures can passively separate swimmers from non-swimming, inert particles. Many bacteria and archaea swim using rotary molecular motors to drive helical propellers called flagella or archaella.

View Article and Find Full Text PDF

Background: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by oxidative stress and progressive motor neuron degeneration. This study evaluates the potential neuroprotective effects of caffeine in the Wobbler mouse, an established model of ALS.

Methods: Wobbler mice received caffeine supplementation (60 mg/kg/day) via drinking water, and key parameters, including muscle strength, NAD metabolism, oxidative stress, and motor neuron morphology, were assessed at critical disease stages.

View Article and Find Full Text PDF

Purpose: Targeted therapy with lenvatinib is a preferred option for advanced hepatocellular carcinoma, however, predicting its efficacy remains challenging. This study aimed to build a nomogram integrating clinicoradiological indicators and radiomics features to predict the response to lenvatinib in patients with hepatocellular carcinoma.

Methods: This study included 211 patients with hepatocellular carcinoma from two centers, who were allocated into the training (107 patients), internal test (46 patients) and external test set(58 patients).

View Article and Find Full Text PDF

Volume correlative light and electron microscopy (vCLEM) is a powerful imaging technique that enables the visualization of fluorescently labeled proteins within their ultrastructural context. Currently, vCLEM alignment relies on time-consuming and subjective manual methods. This paper presents CLEM-Reg, an algorithm that automates the three-dimensional alignment of vCLEM datasets by leveraging probabilistic point cloud registration techniques.

View Article and Find Full Text PDF