98%
921
2 minutes
20
This report studied the changes in the slow dynamics of polyacrylate by adding a hindered phenol (CA) capable of forming three intermolecular hydrogen bonds (inter-HBs) per molecule with the polymer chain. The CA molecule apparently diminishes the slow modes (with lower peak temperatures and peak heights) of the polyacrylate, although it has a higher glass transition temperature () than the acrylic matrix, and the rigid CA-bridged HB network significantly amplifies the α-relaxation near (with higher peak temperatures and peak heights). Consequently, the mixtures exhibit a diminishing slow mode that gradually merges with the prominent -peak with increasing CA loadings. The anomalous dynamics concerning the opposite behaviors of the slow mode and α-relaxation was further rationalized in terms of dissociation of inter-HBs when the temperature is higher than , together with the small molecule-alleviated macromolecular connectivity. This work provides essential insights into the slow dynamics of such HB-driven hybrids, and paves the way for tailoring the viscous flow properties of the hybrid material from a molecular level perspective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2sm00453d | DOI Listing |
J Neurosci
September 2025
Department of Bioengineering, George Mason University, Fairfax, VA, United States,
In the hippocampal formation, cholinergic modulation from the medial septum/diagonal band of Broca (MSDB) is known to correlate with the speed of an animal's movements at sub-second timescales and also supports spatial memory formation. Yet, the extent to which sub-second cholinergic dynamics, if at all, align with transient behavioral and cognitive states supporting the encoding of novel spatial information remains unknown. In this study, we used fiber photometry to record the temporal dynamics in the population activity of septo-hippocampal cholinergic neurons at sub-second resolution during a hippocampus-dependent object location memory task using ChAT-Cre mice of both sexes.
View Article and Find Full Text PDFPerfusion
September 2025
Cardiac Surgery Department, Bristol Royal Children's Hospital, Bristol, UK.
BackgroundDuring cardiopulmonary bypass (CPB), goal-directed perfusion (GDP) seeks to match oxygen delivery to metabolic demand, but the dynamics of oxygen extraction and intraoperative oxygen demand remain poorly understood, especially in paediatric populations. Existing models rely on limited data and assume, for example, a linear relationship between log oxygen demand and temperature.MethodsWe developed GARIX (Global AutoRegressive Integrated model with eXogenous variables and an equilibrium force) to predict minute-by-minute changes in oxygen extraction ratio (OER) using high-resolution intraoperative data.
View Article and Find Full Text PDFJ Physiol
September 2025
Departamento de Neurofisiología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, México City, México.
At chemical synapses, the interplay between the stimulation pattern, the dynamics of presynaptic calcium concentration and the use and replenishment of the vesicle pool causes plasticity phenomena such as synaptic facilitation and depression. These phenomena may coexist, with their relative contribution depending mostly on the initial release probability. Synaptic facilitation is caused by an increased probability of release as a result of presynaptic calcium accumulation, whereas synaptic depression is attributed to depletion of the releasable vesicle pool.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
City University of Hong Kong, Department of Physics, Kowloon, Hong Kong SAR 999077, China.
The ability to slow down light at the single-photon level has applications in quantum information processing and other quantum technologies. We demonstrate two methods, both using just a single artificial atom, enabling dynamic control over microwave light velocities in waveguide quantum electrodynamics (QED). Our methods are based on two distinct mechanisms harnessing the balance between radiative decay and nonradiative decoherence rates of a superconducting artificial atom in front of a mirror.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
University of York, School of Physics, Engineering and Technology, York YO10 5DD, United Kingdom.
We propose a model that is able to reproduce the type-II ultrafast demagnetization dynamics observed in 2D magnets. The spin system is coupled to the electronic thermal bath and is treated with atomistic spin dynamics, while the electron and phonon heat baths are described phenomenologically by coupled equations via the two-temperature model. Our proposed two-temperature model takes into account the effect of the heated substrate, which for 2D systems results in a slow demagnetization regime.
View Article and Find Full Text PDF