98%
921
2 minutes
20
Cell-based therapeutics are an emerging modality with the potential to treat many currently intractable diseases through uniquely powerful modes of action. Despite notable recent clinical and commercial successes, cell-based therapies continue to face numerous challenges that limit their widespread translation and commercialization, including identification of the appropriate cell source, generation of a sufficiently viable, potent and safe product that meets patient- and disease-specific needs, and the development of scalable manufacturing processes. These hurdles are being addressed through the use of cutting-edge basic research driven by next-generation engineering approaches, including genome and epigenome editing, synthetic biology and the use of biomaterials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9149674 | PMC |
http://dx.doi.org/10.1038/s41573-022-00476-6 | DOI Listing |
Transfus Apher Sci
September 2025
Terumo Blood and Cell Technologies, Zaventem, Belgium. Electronic address:
Background: This study, conducted among collection and transplant centers in France, Germany, Japan, the United Kingdom (UK), and the United States (USA), aimed to better understand current trends, challenges, and future directions in cell collection and apheresis practices, focusing on the Spectra Optia™ Apheresis System.
Methods: This cross-sectional study was conducted from July to November 2023 among facilities using the Spectra Optia™ Apheresis System, which could also be using other comparable cell collection technologies, with expertise in cell collection and therapeutics. Respondents completed an online questionnaire.
Bioinformatics
September 2025
The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
Motivation: Drug repositioning presents a streamlined and cost-efficient way to expand the range of therapeutic possibilities. Drugs with human genetic evidence are more likely to advance successfully through clinical trials towards FDA approval. Single gene-based drug repositioning methods have been implemented, but approaches leveraging a broad spectrum of molecular signatures remain underexplored.
View Article and Find Full Text PDFInt J Surg
September 2025
Department of Stomatology, Electric Power Teaching Hospital, Capital Medical University, Beijing, China.
J Mater Chem B
September 2025
Nebraska Translational Research Center (NTRC), Department of Growth and Development, College of Dentistry, University of Nebraska Medical Center, Joseph D. & Millie E. Williams Science Hall, 525 S 42nd St, Room No 3.0.010, Omaha, NE 68105-6040, USA.
Facial nerve injuries cause significant functional impairments, affect facial expressions, speech, and overall quality of life. This article explores advances in facial nerve regeneration, encompassing both conventional and emerging therapeutic strategies. The regenerative process involves Wallerian degeneration, axonal regrowth, and target muscle reinnervation, where the distal axon degrades and the proximal axon initiates sprouting to restore connectivity.
View Article and Find Full Text PDFEMBO Mol Med
September 2025
Department of Neurology, Columbia University, New York, NY, 10032, USA.
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by ubiquitous deficiency in the SMN protein. The identification of disease modifiers is key to understanding pathogenic mechanisms and broadening the range of targets for developing SMA therapies that complement SMN upregulation. Here, we report a cell-based screen that identified inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) as suppressors of proliferation defects induced by SMN deficiency in mouse fibroblasts.
View Article and Find Full Text PDF