Photoactive Red Fluorescent SiO Nanoparticles Based on Controlled Methylene Blue Aggregation in Reverse Microemulsions.

Langmuir

Gerencia Química - Instituto de Nanociencia y Nanotecnología (INN - CONICET), Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650 KNA San Martín, Buenos Aires, Argentina.

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present a reverse microemulsion synthesis procedure for incorporating methylene blue (MB), a known FDA-approved type-II red-absorbing photosensitizer and O generator, into the matrix of hydrophobic-core/hydrophilic-shell SiO nanoparticles. Different synthesis conditions were explored with the aim of controlling the entrapped-dye aggregation at high dye loadings in the hydrophobic protective core; minimizing dye aggregation ensured highly efficient photoactive nanoentities for O production. Monitoring the synthesis in real time using UV-vis absorption allowed tracking of the dye aggregation process. In particular, silica nanoparticles (MB@SiO NPs) of ∼50 nm diameter size with a high local entrapped-MB concentration (∼10 M, 1000 MB molecules per NP) and a moderate proportion of dye aggregation were obtained. The as-prepared MB@SiO NPs showed a high singlet oxygen photogeneration efficiency (Φ = 0.30 ± 0.05), and they can be also considered as red fluorescent probes (Φ ∼ 0.02, λ ∼ 650 nm). The distinctive photophysical and photochemical characteristics of the synthesized NPs reveal that the reverse microemulsion synthesis procedure offers an interesting strategy for the development of complex theranostic nano-objects for photodynamic therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.1c02458DOI Listing

Publication Analysis

Top Keywords

dye aggregation
12
red fluorescent
8
sio nanoparticles
8
methylene blue
8
reverse microemulsion
8
microemulsion synthesis
8
synthesis procedure
8
mb@sio nps
8
aggregation
5
photoactive red
4

Similar Publications

Inverting the Rhodamine Paradigm: Closed-Form Fluorescence with 280 nm Stokes Shift Drives Plastic Circularity.

Angew Chem Int Ed Engl

September 2025

Shaanxi Key Laboratory of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloids Chemistry, Department of Chemistry and Chemical Engineering, ShaanXi Normal University, Xi'an, 710062, P.R. China.

Rhodamine derivatives exhibiting inverted open-closed form fluorescence behavior redefines conventional photochemical paradigms while illuminating new structure-property relationships and fascinating application potentials. Herein, we report a donor-acceptor engineering strategy that activates closed form emission in rhodamines, achieving unprecedented Stokes shifts (>280 nm) while overcoming aggregation-caused quenching. The new class of rhodamines with inverted open-close form emission behavior are created through simultaneous substitution of N,N-diethyl groups with indole (donor) and conversion of spiro-lactam to benzene sulfonamide (acceptor).

View Article and Find Full Text PDF

Synthesis of 6(7)-Arylamino-4H-chromen-4-ones With D-A Structure and Their Photophysical Properties.

Luminescence

September 2025

School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, C

A series of 2-substituted 4H-chromen-4-ones 3a-3h containing triphenylamine or N-phenylcarbazole on the benzene ring were synthesized for the first time via the Suzuki coupling reaction. The photophysical properties of the compounds and their relationship to the structure of the compounds were investigated by methods such as spectroscopic analysis, single-crystal analysis, and theoretical calculations. The systematic results indicate that compounds 3a-3h have intramolecular charge transfer (ICT), aggregation-induced emission (AIE), and dual-state emission (DSE) effects with a wide range of fluorescence emission wavelengths (421-618 nm), showing the potential to be developed into a full-color fluorophore.

View Article and Find Full Text PDF

Enhancement of the optical, electrical, and dielectric properties of PEO/CMC matrix via NaPc dye additive for optoelectronic devices.

Int J Biol Macromol

September 2025

Department of Physics, Faculty of Education, Seiyun University, Hadhramout, Yemen. Electronic address:

In the present study, polymer composite samples were fabricated using the casting technique by incorporating varying weight percentages (0.0, 0.1, 0.

View Article and Find Full Text PDF

A novel aggregation-induced emission (AIE) system with superior performance was successfully developed through local chemical modification from thiophene to thiophene sulfone. This approach, leveraging easily accessible tetraphenylthiophene precursors, dramatically enhances the photophysical properties in a simple oxidation step. Notably, the representative 2,3,4,5-tetraphenylthiophene sulfone (3c) demonstrates remarkable solid-state emission characteristics with a fluorescence quantum yield of 72% and an AIE factor of 240, substantially outperforming its thiophene analog.

View Article and Find Full Text PDF

Low-potential pyrene-coordinated MOFs and CoSOH nanosheets: An electrochemiluminescence energy resonance transfer system for aflatoxin B1 detection.

Anal Chim Acta

November 2025

The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China; Center of Self-Propelled Nanotechnologies, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, PR China

Background: Of the mycotoxins, aflatoxin is the most significant. The detection of aflatoxin B1 (AFB1) is crucial for ensuring food safety, as this highly carcinogenic toxin readily contaminates crops such as grains and nuts, and timely detection can effectively prevent associated health risks. The selection of luminophores is of paramount importance in the detection of ECL (electrochemiluminescence).

View Article and Find Full Text PDF