Combined metabolomic and transcriptomic analysis evidences the interaction between sugars and phosphate in rice.

J Plant Physiol

Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, Sichuan, China. Electronic address:

Published: July 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phosphorus is one of the macro-elements required by plants, but phosphate (Pi), the only form that can be absorbed by plants, is always limited for plant growth and development. To adapt to Pi deficiency, plants have evolved a complex regulatory system to improve Pi acquisition and utilization efficiency. In this study, metabolomic and transcriptomic analyses were performed to exam the global metabolites and gene expressions profiles responding to Pi deficiency in rice. A total of 23 metabolites were co-changed in leaves and roots after Pi deficiency, with sucrose, trehalose and melibiose significant accumulated. A total of 779 genes were co-changed in these leaves and roots. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that differentially expressed genes and differentially accumulated metabolites were co-enriched in galactose metabolism. Further exogenous sugars supply with rice roots could induce Pi starvation responsiveness and the expression of OsPHR2, which codes the central regulator for Pi starvation responsiveness in rice. This work revealed the interaction between sugars and phosphate in rice, and the importance of OsPHR2 in this interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2022.153713DOI Listing

Publication Analysis

Top Keywords

metabolomic transcriptomic
8
interaction sugars
8
sugars phosphate
8
phosphate rice
8
co-changed leaves
8
leaves roots
8
starvation responsiveness
8
rice
5
combined metabolomic
4
transcriptomic analysis
4

Similar Publications

Simulated metabolic profiles reveal biases in pathway analysis methods.

Metabolomics

September 2025

Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.

Introduction: Initially developed for transcriptomics data, pathway analysis (PA) methods can introduce biases when applied to metabolomics data, especially if input parameters are not chosen with care. This is particularly true for exometabolomics data, where there can be many metabolic steps between the measured exported metabolites in the profile and internal disruptions in the organism. However, evaluating PA methods experimentally is practically impossible when the sample's "true" metabolic disruption is unknown.

View Article and Find Full Text PDF

A Holistic Approach to AKI: Integrating Clinical and Molecular Data in the Human Kidney.

Semin Nephrol

September 2025

Division of Nephrology, Internal Medicine, University of Michigan, Ann Arbor, MI. Electronic address:

Despite intensive research efforts, acute kidney injury (AKI) is a common clinical syndrome that has limited treatment options apart from supportive care. The increasing availability of molecular interrogation data from patients with Acute Kidney Injury provides an unparalleled opportunity to leverage systems biology approaches. In this review, we discuss the challenges with AKI research, explain how systems biology approaches can link molecular data to clinical phenotypes, review available molecular interrogation tools and techniques, and provide examples where systems biology approaches have been successfully applied in nephrology.

View Article and Find Full Text PDF

Suaeda salsa(S.salsa) is a promising halophytic species for vegetation restoration in highly saline-alkali soils. Carboxylated single-walled carbon nanotubes (COOH-SWCNTs) have emerged as potential agents for modulating plant responses to abiotic stress.

View Article and Find Full Text PDF

Neurotoxic Effects of 4-Hydroxy-4'-Isopropoxydiphenylsulfone Exposure on Zebrafish Embryos.

Environ Pollut

September 2025

Zhejiang Collaborative Innovation Center for Full-Process Monitoring and Green Governance of Emerging Contaminants, Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.

The central nervous system (CNS) is particularly vulnerable to endocrine-disrupting chemicals, especially bisphenol analogues. Bisphenol A (BPA), a widely studied compound, has been associated with various neurological disorders, leading to restrictions on its use and the subsequent adoption of alternative chemicals such as 4-hydroxy-4'-isopropoxydiphenylsulfone (BPSIP). However, concerns regarding the potential neurotoxicity of BPSIP have emerged.

View Article and Find Full Text PDF

We explored the role of Polygonatum Rhizoma polysaccharide (PRP) in delaying aging and improving Alzheimer's disease (AD) and revealed its potential molecular mechanism. Through chemical characterizations to clarify the physicochemical properties of PRP, it was found that PRP mainly consists of mannose, glucose, galactose, and arabinose, with molecular weights ranging from 7.4 × 10 to 9.

View Article and Find Full Text PDF