Performance assessment of genomic island prediction tools with an improved version of Design-Island.

Comput Biol Chem

Theoretical Statistics and Mathematics Unit, Indian Statistical Institute, 203 B T Road, Kolkata 700 108, India. Electronic address:

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Genomic Islands (GIs) play an important role in the evolution and adaptation of prokaryotes. The origin and extent of ecological diversity of prokaryotes can be analyzed by comparing GIs across closely or distantly related prokaryotes. Understanding the importance of GI and to study the bacterial evolution, several GI prediction tools have been generated. An unsupervised method, Design-Island, was developed to identify GIs using Monte-Carlo statistical test on randomly selected segments of a chromosome. Here, in the present study Design-Island was modified with the incorporation of majority voting, multiple hypothesis testing correction. The performance of the modified version, Design-Island-II was tested and compared with the existing GI prediction tools. The performance assessment and benchmarking of the GI prediction tools require experimentally validated dataset, which is lacking. So, different datasets, generated or taken from literature were utilized to compare the sensitivity (SN), specificity (SP), precision (PPV) and accuracy (AC) of Design-Island-II. It showed substantial enhancement in term of SN, SP, PPV and AC, and significantly reduced the computation time of the algorithm. The performance of Design-Island-II has also been compared with several GI prediction tools using curated dataset of putative horizontally transferred genes. Design-Island-II showed the highest sensitivity and F1 score, comparable specificity, precision and accuracy in comparison to the other available methods. IslandViewer4 and Islander outperformed all the available methods in terms of AC and PPV respectively. Our study suggested Design-Island-II, IslandViewer4 and GIHunter among the top performing GI prediction tools considering both sensitivity and specificity of the methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2022.107698DOI Listing

Publication Analysis

Top Keywords

prediction tools
24
performance assessment
8
sensitivity specificity
8
specificity precision
8
prediction
6
tools
6
design-island-ii
5
performance
4
assessment genomic
4
genomic island
4

Similar Publications

Background: Stroke is a leading cause of death and disability globally, with frequent cognitive sequelae affecting up to 60% of stroke survivors. Despite the high prevalence of post-stroke cognitive impairment (PSCI), early detection remains underemphasized in clinical practice, with limited focus on broader neuropsychological and affective symptoms. Stroke elevates dementia risk and may act as a trigger for progressive neurodegenerative diseases.

View Article and Find Full Text PDF

Recombinant DNA technology is widely used to produce industrially and pharmaceutically important proteins. In silico analysis, performed before executing wet lab experiments has been greatly helpful in this connection. A shift in protein analysis has been observed over the past decade, driven by advancements in bioinformatics databases, tools, software, and web servers.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) remains a leading cause of mortality and long-term disability globally, with survivors at high risk of recurrent stroke, cardiovascular events, and post-stroke dementia. Statins, while widely used for their lipid-lowering effects, also possess pleiotropic properties, including anti-inflammatory, endothelial-stabilizing, and neuroprotective actions, which may offer added benefit in AIS management. This article synthesizes emerging evidence on statins' dual mechanisms of action and evaluates their role in reducing recurrence, improving survival, and mitigating cognitive decline.

View Article and Find Full Text PDF

Biosynthetic potential of the culturable foliar fungi associated with field-grown lettuce.

Appl Microbiol Biotechnol

September 2025

School of Plant Sciences, The University of Arizona, 1140 E South Campus Drive, Forbes 303, Tucson, AZ, 85721, USA.

Fungal endophytes and epiphytes associated with plant leaves can play important ecological roles through the production of specialized metabolites encoded by biosynthetic gene clusters (BGCs). However, their functional capacity, especially in crops like lettuce (Lactuca sativa L.), remains poorly understood.

View Article and Find Full Text PDF

Objectives: To systematically review and meta-analyse the risk factors proposed by the American College of Rheumatology and American College of Chest Physicians as screening tools for rheumatoid arthritis-associated interstitial lung disease (RA-ILD), focusing exclusively on studies using high-resolution computed tomography (HRCT) in prospectively collected data from unselected RA patients.

Method: A comprehensive search was conducted to identify studies evaluating RA-ILD risk factors. Selection criteria included studies using HRCT in prospective, unselected RA cohorts.

View Article and Find Full Text PDF