98%
921
2 minutes
20
A growing body of research has investigated the relationship between indoor air pollution from solid fuel and depression risk. Our study aimed to elucidate the relationship between indoor air pollution from solid fuel and depression in observational studies. The effect of indoor air pollution on depression was estimated using pooled odds ratios (ORs) with 95% confidence intervals (CIs). Heterogeneity was evaluated by the I-squared value (I), and the random-effects model was adopted as the summary method. We finalized nine articles with 70,214 subjects. The results showed a statistically positive relationship between the use of household solid fuel and depression (OR = 1.22, 95% CI = 1.09-1.36). Subgroup analysis based on fuel type groups demonstrated that indoor air pollution from solid fuel was a higher risk to depression (OR = 1.24, 95% CI = 1. 10-1.39; I = 67.0%) than that from biomass (OR = 1.18, 95% CI = 0.96-1.45; I = 66.5%). In terms of fuel use, the use of solid fuel for cooking and heating increased depression risk, and the pooled ORs were 1.21 (95% CI = 1.08-1.36) and 1.23 (95% CI = 1.13-1.34). Exposure to indoor air pollution from solid fuel might increase depression risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-20841-7 | DOI Listing |
J Hazard Mater
August 2025
Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki 00560, Finland. Electronic address:
Uranium dioxide (UO) particles can be released from mines, nuclear fuel manufacturing, reactor accidents, and weapons use. They pose inhalation risks, yet their behavior in the human lung remains poorly understood. This study investigates the long-term chemical alteration and dissolution of µm-sized UO particles in two model lung fluids: Simulated Lung Fluid (SLF) and Artificial Lysosomal Fluid (ALF), representing extracellular and intracellular lung environments, respectively.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
An operando X-ray absorption spectroscopic technique, which enables us to measure X-ray absorption spectra with a position resolution of submicrometers at increased temperatures while controlling atmospheres and passing an electrical current through the specimen, was developed. By applying this technique, the electrochemically active area in a porous LaSrCoO electrode for a solid oxide fuel cell (SOFC) was experimentally and directly evaluated for the first time. The characteristic length of the active area was approximately 1 μm from the electrode-electrolyte interface under a cathodic overpotential of 140 mV at 873 K under 10 bar of (O), although the investigated electrode was thicker than 50 μm.
View Article and Find Full Text PDFACS Nano
September 2025
Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
Coelectrolysis of HO and CO using high-temperature solid oxide cells offers a highly efficient solution for converting greenhouse gases into valuable fuels and chemicals. Although Pt is an effective catalyst for this reaction, its high cost has limited its usage. Herein, we present that Pt-containing alloy catalysts with increased entropy exhibit high Pt utilization efficiency, catalytic performance, and thermal stability.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Department of Materials, Textiles and Chemical Engineering, Research Group Sustainable Materials Science, Ghent University (UGent), Technologiepark 46, Ghent, 9052, Belgium. Electronic address:
This study assesses the economic and environmental performance of the supply chain of coking coal and solid recovered fuel-an often overlooked component of product life cycles-to fifteen European steel plants, by investigating different input combinations and transport methods across six scenarios including imports from both within and outside Europe via ship, road, rail, and river. Results showed that Pre-2022, abroad coking coal was cheaper than local coal, but in 2022, a sharp rise in global prices was driven by three key factors: the European ban on Russian imports, the continental energy crisis, and global shipping disruptions, rendering local coal cheaper. By 2023-2024, markets stabilized, reverting toward pre-pandemic levels.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Ulsan Advanced Energy Technology R&D Center, Korea Institute of Energy Research (KIER), 25 Techno Saneopro 55beon-gil, Nam-gu, Ulsan, 44776, Republic of Korea. Electronic address:
The fuel cells of the future for sustainable development are solid oxide fuel cell (SOFCs) and phosphoric acid fuel cell (PAFCs), and they will have to coexist as future energy sources. This requires a proper understanding of the properties of the materials used in both fuel cell systems and the ability to identify and mitigate the challenges associated with materials that have a high environmental impact. In this study, all materials and processes involved in the manufacturing of 200 kW SOFC and PAFC systems for power generation are divided into stack, balance of plant (BOP) and system assembling components, and a cradle-to-gate environmental impact assessment is conducted to assess the life cycle process from raw materials extraction to final system manufacturing.
View Article and Find Full Text PDF