Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Kinases are among the most successful drug targets. To date, 72 small-molecule kinase inhibitors (SMKIs) have been approved by the US FDA, together with ~500 SMKIs in clinical trials. Although the topic has been heavily reviewed in recent years, an overview that focused on the currently approved SMKIs in combination with the emerging kinase-targeting bifunctional molecules is absent. Herein, we first provide an updated overview of the approved SMKIs, with an emphasis on their binding modes, classified in groups of type I and II ATP-competitive inhibitors, type III and IV allosteric inhibitors, and covalent inhibitors. We then highlight the novel chemical modalities in kinase targeting by using different types of proximity-inducing bifunctional molecules for kinase degradation and modifications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tips.2022.04.006 | DOI Listing |