98%
921
2 minutes
20
Idiopathic pulmonary fibrosis (IPF) is a particularly deadly form of pulmonary fibrosis of unknown cause. In patients with IPF, high serum and lung concentrations of CHI3L1 (chitinase 3 like 1) can be detected and are associated with poor survival. However, the roles of CHI3L1 in these diseases have not been fully elucidated. We hypothesize that CHI3L1 interacts with CRTH2 (chemoattractant receptor-homologous molecule expressed on T-helper type 2 cells) to stimulate profibrotic macrophage differentiation and the development of pulmonary fibrosis and that circulating blood monocytes from patients with IPF are hyperresponsive to CHI3L1-CRTH2 signaling. We used murine pulmonary fibrosis models to investigate the role of CRTH2 in profibrotic macrophage differentiation and fibrosis development and primary human peripheral blood mononuclear cell culture to detect the difference of monocytes in the responses to CHI3L1 stimulation and CRTH2 inhibition between patients with IPF and normal control subjects. Our results showed that null mutation or small-molecule inhibition of CRTH2 prevents the development of pulmonary fibrosis in murine models. Furthermore, CHI3L1 stimulation induces a greater increase in CD206 expression in IPF monocytes than control monocytes. These results demonstrated that monocytes from patients with IPF appear to be hyperresponsive to CHI3L1 stimulation. These studies support targeting the CHI3L1-CRTH2 pathway as a promising therapeutic approach for IPF and that the sensitivity of blood monocytes to CHI3L1-induced profibrotic differentiation may serve as a biomarker that predicts responsiveness to CHI3L1- or CRTH2-based interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9348565 | PMC |
http://dx.doi.org/10.1165/rcmb.2021-0504OC | DOI Listing |
Turk J Pediatr
September 2025
Department of Cardiorespiratory Physiotherapy and Rehabilitation, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Türkiye.
Background: Vascular changes are observed in children with cystic fibrosis (cwCF), and gender-specific differences may impact arterial stiffness. We aimed to compare arterial stiffness and clinical parameters based on gender in cwCF and to determine the factors affecting arterial stiffness in cwCF.
Methods: Fifty-eight cwCF were included.
Pediatr Pulmonol
September 2025
Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA.
Background: The approval of cystic fibrosis transmembrane conductance regulator modulators elexacaftor/tezacaftor/ivacaftor (ETI), has significantly improved pulmonary function for people with cystic fibrosis (pwCF). However, the effects on CF-related bone disease and body composition remain unclear.
Methods: This retrospective real-world study examined adults with CF who received ETI treatment.
Clin Respir J
September 2025
Department of Thoracic Surgery, Taizhou Hospital, Taizhou, Zhejiang, China.
Background: Persistent inflammation is a crucial characteristic of idiopathic pulmonary fibrosis (IPF). Gut microbiota (GM) contribute to the occurrence and development of several pulmonary diseases through the "gut-lung axis." The genetic role of GM in IPF and the mediating effect of circulating inflammatory proteins.
View Article and Find Full Text PDFIntroduction: Interstitial pneumonia with autoimmune features (IPAF) describes a rare condition characterized by interstitial lung disease (ILD) with autoimmune manifestations in the absence of defined autoimmune rheumatic diseases (AIRD). Although the classification was established in 2015, prospective data on disease progression remain limited.
Objectives: To identify predictors of ILD progression in IPAF patients using three criteria: 1) progressive pulmonary fibrosis (PPF), 2) INBUILD criteria, 3) absolute FVC decline ≥10%.
Pulm Circ
July 2025
Division of Pulmonary, Critical Care, and Sleep Medicine Tufts Medical Center Boston Massachusetts USA.
Pulmonary arterial hypertension (PAH) is characterized by vasoconstriction, proliferation, fibrosis, and microthrombosis of the pulmonary vasculature, which causes elevated pulmonary arterial pressure and vascular resistance leading to right ventricular failure and death. Previous treatments targeted three known pathways involved in the development of PAH: endothelin, nitric oxide, and prostacyclin. Dysfunctional signaling of the transforming growth factor-beta (TGF-β) family, via bone morphogenetic protein (BMP) receptor 2 and activin signaling, has also been implicated in PAH leading to the development of a new class of therapies.
View Article and Find Full Text PDF