Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human immunodeficiency virus type 1 (HIV-1) vaccination of cows has elicited broadly neutralizing antibodies (bNAbs). In this study, monoclonal antibodies (mAbs) are isolated from a clade A (KNH1144 and BG505) vaccinated cow using a heterologous clade B antigen (AD8). CD4 binding site (CD4bs) bNAb (MEL-1872) is more potent than a majority of CD4bs bNAbs isolated so far. MEL-1872 mAb with CDRH3 of 57 amino acids shows more potency (geometric mean half-maximal inhibitory concentration [IC]: 0.009 μg/mL; breadth: 66%) than VRC01 against clade B viruses (29-fold) and than CHO1-31 against tested clade A viruses (21-fold). It also shows more breadth and potency than NC-Cow1, the only other reported anti-HIV-1 bovine bNAb, which has 60% breadth with geometric mean IC of 0.090 μg/mL in this study. Using successive different stable-structured SOSIP trimers in bovines can elicit bNAbs focusing on epitopes ubiquitous across subtypes. Furthermore, the cross-clade selection strategy also results in ultra-potent bNAbs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9133467PMC
http://dx.doi.org/10.1016/j.xcrm.2022.100635DOI Listing

Publication Analysis

Top Keywords

cd4 binding
8
binding site
8
clade viruses
8
broad ultra-potent
4
ultra-potent cross-clade
4
cross-clade neutralization
4
neutralization hiv-1
4
hiv-1 vaccine-induced
4
vaccine-induced cd4
4
site bovine
4

Similar Publications

Classical Hodgkin Lymphoma (CHL) is characterized by a complex tumor microenvironment (TME) that supports disease progression. While immune cell recruitment by Hodgkin and Reed-Sternberg (HRS) cells is well-documented, the role of non-malignant B cells in relapse remains unclear. Using single-cell RNA sequencing (scRNA-seq) on paired diagnostic and relapsed CHL samples, we identified distinct shifts in B-cell populations, particularly an enrichment of naïve B cells and a reduction of memory B cells in early-relapse compared to late-relapse and newly diagnosed CHL.

View Article and Find Full Text PDF

Digital reconstruction of full embryos during early mouse organogenesis.

Cell

August 2025

Department of Cardiac Surgery, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Zhongda Hospital, Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, School of Life Science and

Early organogenesis is a crucial stage in embryonic development, characterized by extensive cell fate specification to initiate organ formation but also by a high susceptibility to developmental defects. Here, we profiled 285 serial sections from six E7.5-E8.

View Article and Find Full Text PDF

HIV-1-mediated CD4 downregulation is a well-known mechanism that protects infected cells from antibody-dependent cellular cytotoxicity (ADCC). While CD4 downregulation by HIV-1 Nef and Vpu proteins has been extensively studied, the contribution of the HIV-1 envelope glycoprotein (Env) in this mechanism is less understood. While Env is known to retain CD4 in the endoplasmic reticulum (ER) through its CD4-binding site (CD4bs), little is known about the mechanisms underlying this process.

View Article and Find Full Text PDF

Introduction: Autoimmune uveitis is a sight-threatening inflammatory eye disease driven by immune dysregulation. We previously introduced a therapeutic strategy involving the induction of retinal-antigen-specific regulatory T cells (Tregs) via αCD4 antibody injection followed by administration of the retinal self-peptide IRBP1-20, which effectively suppresses inflammation during the onset of experimental autoimmune uveitis (EAU).

Methods: We evaluated the long-term therapeutic efficacy of this approach in a chronic EAU model.

View Article and Find Full Text PDF

Objective: Interleukin-17-producing CD4 Th17 cells contribute to the pathogenesis of autoimmune diseases, including crescentic glomerulonephritis. Although ADAM9 has been reported to contribute to organ inflammation, the mechanism remains poorly understood. The goal of the current study was to investigate how ADAM9 alters T cell metabolism to promote the generation of Th17 cell differentiation.

View Article and Find Full Text PDF